1. (15 Points) Fatal Errors: Simplify each expression as much as possible.

Show all work for these problems, or you may receive NO CREDIT.
(a) Simplify the radical:

$$
\sqrt{w^{4}+9 w^{2} y^{2}}
$$

$$
\sqrt{w^{4}+9 w^{2} y^{2}}=\sqrt{w^{2}\left(w^{2}+9 y^{2}\right)}=\sqrt{w^{2}} \sqrt{w^{2}+9 y^{2}}=w \sqrt{w^{2}+9 y^{2}}
$$

(b) Rewrite without negative exponents or fractions in fractions:

$$
\left(x^{-1}-k^{-1}\right)^{-1}
$$

$$
\left(x^{-1}-k^{-1}\right)^{-1}=\left(\frac{1}{x}-\frac{1}{k}\right)^{-1}=\left(\frac{k}{x k}-\frac{x}{x k}\right)^{-1}=\left(\frac{k-x}{x k}\right)^{-1}=\frac{x k}{k-x}
$$

(c) Factor and simplify: $\frac{9 s^{2} t^{3}}{3 s t^{5}+6 s^{3} t^{2}}$

$$
\frac{9 s^{2} t^{3}}{3 s t^{5}+6 s^{3} t^{2}}=\frac{9 s^{2} t^{3}}{3 s t^{2}\left(t^{3}+2 s^{2}\right)}=\frac{3 s t}{t^{3}+2 s^{2}}
$$

2. (10 Points) Graph the polynomial $y=4(x+2)(x-1)^{3}(x+4)$. Label your intercepts and justify your graph with a sign chart or something equivalent.

3. (10 Points) Perform the following long division, and identify the quotient and remainder:

$$
\frac{x^{3}-x^{2}+2}{x^{2}+2 x-3}
$$

$$
\left.x^{2}+2 x-3\right) \begin{array}{r}
x-3 \\
\begin{array}{r}
x^{3}-x^{2}+2 \\
-x^{3}-2 x^{2}+3 x \\
-3 x^{2}+3 x+2 \\
\frac{3 x^{2}+6 x-9}{9 x-7}
\end{array}
\end{array}
$$

So the quotient is $x-3$ and the remainder is $9 x-7$.
4. (15 Points) Let $f(x)=2 x^{2}-4 x-5$.
(a) Find the x - and y-intercepts.

Setting $x=0$ gives the y-intercept: $f(0)=2(0)^{2}-4(0)-5=-5$.
Setting $f(x)=0$ and solving finds the x-intercepts:
$2 x^{2}-4 x-5=0 \Longrightarrow x=\frac{4 \pm \sqrt{(-4)^{2}-4(2)(-5)}}{2(2)}=1 \pm \frac{\sqrt{56}}{4}=1 \pm \frac{\sqrt{14}}{2}$.
(b) Find the coordinates of the vertex and the equation for the axis of symmetry.

The x-coordinate for the vertex is $h=\frac{-b}{2 a}=\frac{-(-4)}{2(2)}=1$.
The y-coordinate is $f(1)=2-4-5=-7$.
The axis of symmetry is $x=1$.
(c) Graph $y=f(x)$. Label all intercepts, vertex and axis of symmetry.

5. (20 Points) We intend to enclose a rectangular area by building a wooden fence, using a preexisting stone wall for one of the sides. The cost of fence for segments perpendicular to the stone wall is $\$ 2$ per foot, and the length parallel to the wall costs $\$ 5$ per foot. Let x be the length of fence perpendicular to the wall and y the length parallel to the wall. We have a total of $\$ 200$ to spend. See the figure.
(a) If we want 20 feet of fence perpendicular to the wall $(x=20)$, and we spend all the money, how long must the length parallel to the wall (y) be? What is the resulting enclosed area?

If $x=20$, then the cost of the two segments of fence will be 40 feet $\times \$ 2 /$ foot $=\$ 80$. The remaining $\$ 120$ will be spent on fence at $\$ 5$ per foot, so y would be $120 / 5=24$ feet.
Therefore, the enclosed area would be $20 \times 24=480$ feet.
(b) Find a function $A(x)$, which gives the enclosed area of the fence, by spending all $\$ 200$.

The total cost of the fence is $5 y+2(2 x)$, and with $\$ 200$, we get

$$
5 y+4 x=200 \Longrightarrow 5 y=200-4 x \Longrightarrow y=40-\frac{4}{5} x
$$

So the enclosed area A would be

$$
A=x y=x\left(40-\frac{4}{5} x\right)=40 x-\frac{4}{5} x^{2}=A(x)
$$

(c) Find the dimensions which maximizes the enclosed area in this situation. Explain why you know your answer to yield the maximum.

The value of area is determined by a quadratic function for which the leading coefficient is negative $\left(-\frac{4}{5}=a\right)$. Therefore, the vertex is the point whose input (value of x) will give the largest output (value of A). The x-coordinate of the vertex is

$$
\frac{-b}{2 a}=\frac{-40}{2\left(-\frac{4}{5}\right)}=40 \cdot \frac{5}{8}=25
$$

So when x is 25 feet, the area is maximal. Then

$$
y=40-\frac{4}{5}(25)=40-20=20
$$

Therefore, the maximal enclosed area is $A=25 \times 20=500$ square feet.
6. (15 Points) Solve the given inequality. Give your answer in interval notation. Show all work.

$$
3 x^{2} \geq 2 x+1
$$

```
3x}\mp@subsup{x}{}{2}\geq2x+1\Longrightarrow3\mp@subsup{x}{}{2}-2x-1\geq0\Longrightarrow(3x+1)(x-1)\geq
```

So $x=-\frac{1}{3}$ and $x=1$ are our key values:

Interval	Test Value	$3 x+1$	$x-1$	$(3 x+1)(x-1)$	$\geq 0 ?$
$\left(-\infty,-\frac{1}{3}\right)$	-1	\ominus	\ominus	\oplus	Yes
$-\frac{1}{3}$		0	\ominus	0	Yes
$\left(-\frac{1}{3}, 1\right)$	0	\oplus	\ominus	\ominus	No
1		\oplus	0	0	Yes
$(1, \infty)$	2	\oplus	\oplus	\oplus	Yes

So the solution is $\left(-\infty,-\frac{1}{3}\right] \cup[1, \infty)$.
7. (15 Points) Solve the given inequality. Give your answer in interval notation. Show all work.

$$
|2-3 x|>7
$$

$$
\begin{aligned}
& 2-3 x>7 \\
& -3 x>5 \quad \text { or } \\
& \begin{aligned}
2-3 x & <-7 \\
-3 x & <-9 \\
x & >3
\end{aligned}
\end{aligned}
$$

So the solution is $\left(-\infty,-\frac{5}{3}\right) \cup(3, \infty)$.
8. (15 Points) Given that -1 is a root of $f(x)=x^{3}-x^{2}-5 x-3$, find all solutions to

$$
x^{3}-x^{2}-5 x-3=0 .
$$

Since -1 is a solution, we know that $x+1$ divides $f(x)$, so using long division (or synthetic division:

$$
x+1) \begin{array}{r}
x^{2}-2 x-3 \\
x^{3}-x^{2}-5 x-3 \\
-x^{3}-x^{2} \\
\hline-2 x^{2}-5 x \\
\frac{2 x^{2}+2 x}{-3 x-3} \\
\frac{3 x+3}{0}
\end{array}
$$

The quotient can be factored as $x^{2}-2 x-3=(x-3)(x+1)$. So
$0=x^{3}-x^{2}-5 x-3=(x+1)\left(x^{2}-2 x-3\right)=(x+1)(x-3)(x+1) \Longrightarrow x=-1,3$.
9. (10 Points) Let $f(x)=\frac{x^{2}-2 x+3}{4 x^{2}+4}$.
(a) Find the domain of $f(x)$, and find all vertical and horizontal asymptotes, if any.

The domain will be all values except those for which
$4 x^{2}+4=0 \Longrightarrow 4 x^{2}=-4 \Longrightarrow x^{2}=-1 \Longrightarrow \ldots$
So there are no bad values, making the domain be $(-\infty, \infty)$.
Therefore, there are no vertical asymptotes for this rational function.
When x gets big, then

$$
f(x)=\frac{x^{2}-2 x+3}{4 x^{2}+4} \approx \frac{x^{2}}{4 x^{2}}=\frac{1}{4}
$$

So the graph of this rational function will have a horizontal asymptote of $y=\frac{1}{4}$.
(b) Does the graph $y=f(x)$ ever cross its horizontal asymptote? If so, find the point of intersection. If not, justify your answer.

We find when $f(x)=\frac{1}{4}$:

$$
\begin{aligned}
\frac{1}{4} & =\frac{x^{2}-2 x+3}{4 x^{2}+4} \\
x^{2}+1 & =x^{2}-2 x+3 \\
1 & =-2 x+3 \\
-2 & =-2 x \\
x & =1
\end{aligned}
$$

So the graph of $f(x)$ crosses its horizontal asymptote at the point ($1, \frac{1}{4}$).
10. (10 Points) Find the remainder of $\frac{x^{49}-7 x^{2}}{x-2}$.

By the remainder theorem, the remainder of this would be $f(2)$, where $f(x)=x^{49}-7 x^{2}$, so the remainder will be $2^{49}-7\left(2^{2}\right)$.
11. (15 Points) Let $f(x)=\sqrt{x+1}$ and $g(x)=x^{2}-1$. Show all work on this problem.
(a) Find $(f \circ g)(x)$ and its domain.
$(f \circ g)(x)=f(g(x))=f\left(x^{2}-1\right)=\sqrt{\left(x^{2}-1\right)+1}=\sqrt{x^{2}}=|x|$.
The domain of this function is $(-\infty, \infty)$.
(b) Find $(g \circ f)(x)$ and its domain.
$(g \circ f)(x)=g(f(x))=g(\sqrt{x+1})=(\sqrt{x+1})^{2}-1=x+1-1=x$.
The domain of this function is $[-1, \infty)$.
(c) Are f and g inverses? Justify your answer.

No, their compositions don't both give x.

