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CHAPTER 1

Functions of two and more variables.

1. n-dimensional space

The line is one-dimensional, the plane is two dimensional, and the space around us is
three dimensional1

A point on the line is specified by one coordinate “x”, a point in the plane by two
coordinates, “(x, y)”, and a point in three dimensional space can be specified by three
coordinates (x, y, z). Going on like that, a point in 56-dimensional space is specified
by 56 coordinates, (x1, x2, . . . , x55, x56). Instead of getting philosophical about what n-
dimensional space really is (“does it exist?”), we simply say that a point in n-dimensional
space is a list of n-real numbers, (x1, . . . , xn) and that, as far as mathematics is concerned,
n-dimensional space is just the collection of all possible lists (x1, · · · , xn) of n numbers.
If n = 1, 2, or 3, then we can visualize such a point by drawing one, two or three axes; if
n = 4 or more, then we can’t, but it doesn’t matter.

The symbol Rn is used to stand for n-dimensional space, meaning the collection of
all such lists of n numbers (x1, . . . , xn).

In this course we will mostly deal with R2 and R3, although much of what we do
works (and gets used) without modification in Rn.

2. Functions of two or more variables

2.1. The graph of a function. In first-year calculus we were concerned with func-
tions of one variable, meaning the “input” is a single real number and the “output” is
likewise a single real number. At the end of math 222 we considered functions taking a
real number to a vector: for each input value we get a position in space. Now we turn to
functions of several variables, meaning several input variables, functions. While we will
deal primarily with n = 2 and to a lesser extent n = 3, many of the techniques we discuss
can be applied to larger values of n as well.

A function of two variables maps a pair of values (x, y) to a single real number. The
three-dimensional xyz-coordinate system is a convenient aid in visualizing such functions:
above each point (x, y) in the xy-plane we graph the point (x, y, z), where of course
z = f(x, y).

2.2. Vector notation. We will use vectors all the time in this course. If ~x is the
position vector of the point (x, y) in the plane, i.e. if ~x = ( xy ), then one writes

f(x, y) = f(~x).

2.3. Example. Consider f(x, y) = 3x+ 4y− 5. Writing this as z = 3x+ 4y− 5 and
then 3x+4y−z = 5 we recognize the equation of a plane. In the form f(x, y) = 3x+4y−5
the emphasis has shifted: we now think of x and y as independent variables and z as a
variable dependent on them, but the geometry is unchanged.

1Although some physicists will tell you it’s really 11 or 24 dimensional.
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8 1. FUNCTIONS OF TWO AND MORE VARIABLES.

Figure 1: The graph of some function, and its domain (a rectangle in this example).

2.4. Example. You know that x2 + y2 + z2 = 4 represents a sphere of radius 2. We
cannot write this in the form z = f(x, y), since for each x and y in the disk x2+y2 < 4 there
are two corresponding points on the sphere. As with the equation of a circle, we can resolve

this equation into two functions, f(x, y) =
p

4− x2 − y2 and f(x, y) = −
p

4− x2 − y2,
representing the upper and lower hemispheres. Each of these is an example of a function
with a restricted domain: only certain values of x and y make sense (namely, those for
which x2 + y2 ≤ 4) and the graphs of these functions are limited to a small region of the
plane.

2.5. Freezing a variable. If a
function isn’t familiar, then a good strat-
egy for drawing its graph is to “freeze a
variable.” In other words, to analyze a
function z = f(x, y) you pretend y is a
constant: then x is the only independent
variable, and you can try to draw the
graph of the function z = f(x, y), now
thinking of this as a function of only one
variable. This graph is a curve in the
xz plane. You get one such curve for
each choice of y. Piecing these graphs
together then gives you the graph of the
two-variable function z = f(x, y).

You could apply the same proce-
dure with the roles of x and y switched:

i.e. for each fixed x you try to graph
z = f(x, y) as a function of the variable
y only, after which you try to fit all the
graphs you get for different values of x
together.

x

y

z

2.6. Example – draw the graph of f(x, y) = xy. Let’s plot the graph of z =
f(x, y) = xy. For each fixed value of y the graph of f(x, y) = xy is a straight line with
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slope y. For positive y the line has positive slope, for negative y it has negative slope.
Plotting the graphs of z = xy for y frozen at the values -1,− 1

2
, 0, 1

2
, and 1 gives us these

drawings:

y=−1 y=−1/2 y=0 y=1/2 y=1

z

x x x x x

z z z z

y

x

z

−1/2

−1

0
1/2

1

The function z = xy is symmetric in the x and y variables, so you get similar pictures
if you freeze x and graph z = xy as a function of y. Carefully putting both pictures
together gives something like this:

2.7. The domain of a function.
Just as with functions of one variable,
functions of two variables have a do-
main, consisting of all the points (x, y)
in the plain for which f(x, y) is defined.
For functions of one variable the domain
is usually an interval, but for functions of
two variables the domain can have more
interesting shapes. In the drawing on
the left here, the function f(x, y) is de-
fined to be the inverse of the distance
from the point (x, y) to the curve E in
the picture. This function is only defined

when this distance is not zero (otherwise
you can’t divide by the distance. . . ), so
the domain of this function consists of
all points which do not lie on the curve.

f(x, y) = 1/(distance from (x, y)  to E)

The curve E

d d(x,y)
(x,y)

2.8. Example. What is the domain of the function

f(x, y) =
1√

1− x− y
??

Clearly the function is defined if the quantity under the square root is nonnegative (oth-
erwise you can’t take the square root), and not zero (otherwise you can’t divide by the
resulting square root). So the domain consists of all points with 1− x− y > 0, or, equiv-
alently, y < 1 − x. The domain consists of all points in the plane which line below the
graph of y = 1− x.
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3. Open and closed sets in Rn

Intervals in the real line come in four kinds, depending on whether they include
their endpoints or not: you can have (a, b), (a, b], [a, b) and [a, b], and those are all the
possibilities. With domains in the plane, or in space there are many more possibilities,
and it will sometimes be important to distinguish between domains which include all their
“endpoints” and those that don’t. In the present context one doesn’t say “endpoint” but
speaks of boundary point instead. To define what a boundary point is, it turns out that
you need to resort to ε and δ again, or a least to ε. Here is some terminology which we
will use:

• Br(p) is the ball with center p and radius r.
• G ⊂ Rn is open if for every point p in G there is an ε > 0 such that G contains
Bε(p).

• G ⊂ Rn is closed if its complement is open.
• p is a boundary point of G if Br(p) always contains both points from G and

from its complement, no matter how small you choose r > 0.

The following intuitive description is good enough for math 234: G is closed if it contains
all its boundary points; G is open if it contains none of its boundary points.

Figure 2: Some domains in the plane. Points in the domain are shaded gray. Boundary points which
are included in the domain are marked in black.

3.1. Example. Consider the three domains

G1 = all points (x, y) with x2 + y2 < 1

G2 = all points (x, y) with x2 + y2 ≤ 1

G3 = all points (x, y) with −1 ≤ x ≤ 1 and −
p

1− x2 < y ≤
p

1− x2

For all three domains the boundary points are the points on the unit circle. G1 contains
none of its boundary points, so it is called “open”; G2 contains all its boundary points, so
it is called “closed”; G3 contains some but not all of its boundary points, so it is neither
open nor closed.

4. More examples of visualization of Functions

You can visualize a function f of two variables by means of its graph, but this is not
the only way. There are at least two alternatives. The first is in terms of level sets, the
other is as a movie of a graph of a function of one variable.
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Level sets are defined as follows. Given a function z = f(x, y) and a number c, the
level set at level c is the set of all points in the plane which satisfy f(x, y) = c; in symbols,

“Level set of f at level c”
def
= {(x, y) : f(x, y) = c} .

To describe a function in terms of its level sets, one usually picks a range of values for the
constant c and draws the level sets corresponding to the chosen values of c in one figure.

While the graph is a three-dimensional object, the level set is a set of points in the
plane, usually a curve. Level sets are therefore easier to draw than graphs.

4.1. Example. What are the level sets of the function f(x, y) = 3− x− y?

For any given number c the level set at level c of f contains exactly those points
(x, y) which satisfy f(x, y) = c, i.e. 3 − x − y = c. This is a line, and it is the graph of
y = 3− c− x: so it is the line with slope −1 and “y-intercept” 3− c.

4.2. Level sets of the saddle surface. What are the level sets of the function
whose graph we drew in § 2.6?

The function was given by f(x, y) = xy, so the level set at level c consists of all points
(x, y) in the plane which satisfy xy = c. For instance, if c = 1, then you get the familiar
hyperbola y = 1/x. For other positive values of c you get similar hyperbolas, and for
negative c you get hyperbolas in the 2nd and 4th quadrants.

The level at c = 0 is exceptional because it is not a hyperbola, but rather consists of
two crossing lines. Namely, xy = 0 holds when either x = 0 or y = 0 holds, so the level
set at c = 0 is the union of the x-axis and the y-axis.

xy =0.2

xy =0.2

xy =0.6

xy =0.6

xy =1.0

xy =1.0

xy =1.4

xy =1.4

Figure 3: A few level sets of the function f(x, y) = xy. Only positive levels are shown.
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4.3. An example from the “real” world. Here is a function of local interest.
The domain of the function is the water surface of Lake Mendota (let’s pretend this is a
plane domain), and the function, which I’ll call d instead of f , is given by d(x, y) = the
depth of the lake at location (x, y). There’s no formula for this function, but the limnology
department of the UW has measured the depth and presented the results in terms of the
level sets of the function d.

The level curves of a function z = d(x, y). The domain of this function is the lake,
and d(x, y) is the depth in meters of Lake Mendota at (x, y).

See http://limnology.wisc.edu/lake_information/mendota/mendota.html

4.4. Moving graphs. There’s another way of visualizing a function z = f(x, y) of
two variables where you think of one of the independent variables (e.g. y) as “time.” The
final picture is not one static picture of a three dimensional surface, but rather a movie of
a graph which is moving around in the xz plane.

If you have a function z = f(x, y), then let us think of y as time, and let us relabel
it as t, so that we are looking at the function z = f(x, t). Now at each moment in time t
we have a function z = f(x, t) of one variable x whose graph you can try to draw. Think
of this graph as a still-image. Then as you let time t vary, putting the still images in a
sequence, you get a movie of a graph of a changing function of one variable.

For instance, if the function is once again the saddle surface function z = xy, then we
would be considering the function z = xt. At each moment t the graph of z = xt is a line
with slope t. Putting together these graphs gives a movie of a line which begins with a
line of rather negative slope; during the movie the slope increases, and in the middle our
line has achieved horizontality; finally, the closing shot presents us with a line with a very
positive slope. Here are some stills from the movie:

http://limnology.wisc.edu/lake_information/mendota/mendota.html
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t=1

z

x x x x x

z z z z

t=−1 t=−1/2 t=0 t=1/2

So you see that this interpretation is not very different from the procedure of “freezing
the y variable.” The only real difference lies in what you do with all the separate graphs
you get after you freeze a variable. In one case you try to piece them together to make a
bigger drawing of a three-dimensional object, in the other you put them together to make
a motion picture.

Problems

In the problems in this stage of the course, you will be asked to “sketch the graph of a function.”
From math 221 you remember that this meant you had to find minima, maxima, inflection points,
and other features of the graph. In 234 you will learn to do the same for functions of two (and more)
variables, but for now you should try to use the method of “freezing a variable” or other similar tricks
to get an idea of what the graph of f looks like.

You can use a graphing program (such as Grapher.app on the Mac, and GraphCalc on Windows)
to check your answer.

Note: very often students try to fit their
drawings into a region the size of a
post-it. In this course, whenever you
make a drawing, especially if it’s a three-
dimensional drawing, make it large! Use
half a page for a drawing. Make sure
you have enough paper, try to find lots
of cheap scrap paper.

1. Make careful drawings of the graphs of the three functions in the examples in §2.3, and §2.4.

Find the domain of these functions. Also, label the axes in every drawing you make.

2. Which functions of two variables z = f(x, y) are defined by the following formulae? Find the
domain of each function. Then draw the domain. Try to sketch their graphs.

(i) z − x2 = 0 (ii) z2 − x = 0 (iii) z − x2 − y2 = 0

(iv) z2 − x2 − y2 = 0 (v) xyz = 1 (vi) xy/z2 = 1
(vii) x+ y + z2 = 0 (viii) x+ y + z2 = 1

3. Figure 3 only presents level sets f(x, y) = c of the function f(x, y) = xy for some positive values
of c. What does the zero set look like, and what do the level sets f(x, y) = c with c < 0 look like?

4. Let Q be the square in the plane consisting of all points (x, y) with |x| ≤ 1, |y| ≤ 1. This problem is
about the so-called distance function to Q. This function is defined as follows: f(x, y) is the distance
from the point (x, y) to the point in Q nearest to (x, y).

(i) Which point in Q is nearest to (0, 1
2

)? Which is closest to (0, 2)? Which is closest to (3, 4)?

(ii) Compute f(0, 1
2

), f(0, 2) and f(3, 4)).

(iii) What is the zero set of f?

(iv) Draw the level sets of f at levels −1, 1, 2, and 3. Describe the general level set f(x, y) = c where
c is an arbitrary number.

(v) Give a formula for f(x, y). (It turns out too be hard to capture the distance function in one
formula. You will have to split the plane into different regions and describe f(x, y) by different
formulas, according to which region (x, y) belongs to.)



14 1. FUNCTIONS OF TWO AND MORE VARIABLES.

5. If d(x, y) is the depth function of Lake Mendota (see §4.3), then what are the level sets d(x, y) = c

for c = 0, c = +10 and for c = −10 (meters)? What is the level set d(x, y) = 400 (meter)?

6. For each of the functions in problem 2 draw the level sets at level z = c for a few values of c (as
was done in Figure 3 and § 4.3). What does the level set for an arbitrary c look like? Are they familiar
curves?

7. Describe and explain the relation between the graph of the function y = g(x) of one variable, and

the corresponding function f(x, y) = g
`p

x2 + y2
´

of two variables.

What do the level sets of f(x, y) look like?

For instance, if g(x) = x, then f(x, y) =
p
x2 + y2: what is the relation between the graphs of

g and f?

8. Find the domain of the following functions of two (or occasionally three) variables:

(i) f(x, y) =
√

9− x2 +
p
y2 − 4 (ii) f(x, y) = arcsin(x2 + y2 − 2)

(iii) f(x, y) =
√
x · √y (iv) f(x, y) =

√
xy

(v) f(x, y, z) = 1/
√
xyz (vi) f(x, y) =

p
16− x2 − 4y2

9. Here are two sets of level curves with levels z = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4. One is for a function

whose graph is a cone (z =
p
x2 + y2), the other is for a paraboloid (z = x2 + y2). Which is which?

Explain.

Problems about movies

10. Describe the “movie” that goes with each of the following functions.

(i) f(x, t) = x sin t (ii) f(x, t) = x sin 2t (iii) f(x, t) = t sinx

(iv) f(x, t) = 2t sinx (v) f(x, t) = t sin 2x (vi) f(x, t) = (x− t)2

(vii) f(x, t) = (x− sin t)2 (viii) f(x, t) = (x− t2)2 (ix) f(x, t) =
t2

1 + x2

(x) f(x, t) =
1

(1 + x2)(1 + t2)

11. If y = g(x) is any function of one variable, then a function of the form f(x, t) = g(x− ct) is often
called a traveling wave with wave speed c and profile g. Let g be any non constant function of your
choice and describe the movie presented by the function f(x, t) = g(x− ct) (can’t choose? Then try

“Agnesi’s witch” g(x) = 1
1+x2 .)

The number c is called the wave speed. If c > 0 is the motion to the left or to the right?
Explain.

12. If y = g(x) is any function of one variable, then a function of the form f(x, t) = cos(ωt)g(x) is
often called a standing wave. Let g be any non constant function of your choice and describe the
movie presented by the function f(x, t) = cos(ωt)g(x) (can’t choose? Then try “Agnesi’s witch”

g(x) = 1
1+x2 again, or for this example, try g(x) = sinx.)

The number ω
2π

is called the frequency of the standing wave. The function g(x) is called its
profile. How long does it take before the standing wave returns to its original position, i.e. what is the
smallest T > 0 for which f(x, T ) = f(x, 0) for all x? Explain.
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About open and closed sets

13. Draw the sets G1, G2, G3 from section 3.1 in the same style as figure 2 (i.e. shade the points in
the region and mark the boundary points which are included in the region).

14. Using the intuitive description of when a set is open, closed, or neither of those, discuss which of
the intervals (0, 1), [0, 1], [0, 1), and (0, 1] are open/closed/neither.

15. (for discussion) Can you split the plane into two sets, both of which are open?

5. Continuity and Limits

5.1. The limit of a function of two variables. Just as with functions of one
variable we need to define the limit of f(x, y) as (x, y) approaches some given point (a, b).
There is again a precise definition involving epsilons and deltas, and it is in many ways
pretty much the same definition as in math 221. Here it is:

5.2. Definition. Let f(x, y) be a function of two variables. Then we say that

lim
(x,y)→(a,b)

f(x, y) = L

if for every ε > 0 you can find a δ > 0 such that for all points (x, y) one has

(x, y) lies in Bδ(a, b) =⇒ |f(x, y)− L| < ε.

Remember that Bδ(a, b) is the disc with radius δ and center (a, b). The last line of
the definition therefore says that you can be sure that f(x, y) will be approximately equal
to L with an error of no more than ε, provided you choose (x, y) so close to (a, b) that
the distance between (x, y) and (a, b) is less than δ. The first part of the definition will
say that, no matter which ε > 0 you come up with, a δ > 0 can be found for which the
second part is true.

In this course we will hardly ever use the above definition. When we have to compute
limits we will use the limit properties, such as

lim
(x,y)→(a,b)

f(x, y)± g(x, y) =
n

lim
(x,y)→(a,b)

f(x, y)
o
±
n

lim
(x,y)→(a,b)

g(x, y)
o
,(1)

lim
(x,y)→(a,b)

f(x, y)g(x, y) =
n

lim
(x,y)→(a,b)

f(x, y)
o
·
n

lim
(x,y)→(a,b)

g(x, y)
o

(2)

lim
(x,y)→(a,b)

f(x, y)

g(x, y)
=

lim
(x,y)→(a,b)

f(x, y)

lim
(x,y)→(a,b)

g(x, y)
(3)

where the latter holds only if lim(x,y)→(a,b) g(x, y) 6= 0, and the interpretation of these
formulas is that if the expression on the right exists, then the limit on the left also exists,
and both are equal.

5.3. Definition of Continuity. A function f(x, y) is called continuous at a point
(a, b) in its domain if

lim
(x,y)→(a,b)

f(x, y) = f(a, b).

The precise meaning of continuity is expressed in terms of ε’s and δ’s, using definition
5.2, but the more important interpretation (for this course) of the definition is that if f
is continuous at (x = a, y = b), then the function value f(x, y) will be close to f(a, b) if x
and y are both sufficiently close to a and b, respectively.

In math 234 we do not study the techniques that can be used to prove continuity of
a function of two variables. While there are many discontinuous functions, most of these
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involve division by zero (see examples below), or “definition by parts” (see problem 18),
or more complicated constructions.

Iterated Limits

Along path 1 you first send x → a, and then
y → b, and this corresponds to the iterated
limit

lim
y→b

lim
x→a

f(x, y).

If you first let y → b and then let x→ a, you
get path 2, which corresponds to the other
iterated integral.
There are many other paths along which (x, y)
can approach (a, b), and the limit

lim
(x,y)→(a,b)

f(x, y)

equals some number L if f approaches this
value no matter which path (x, y) follows as
it approaches (a, b).

5.4. Iterated limits. Instead of introducing a brand new definition of “limit” you
could try to recycle the old one-variable definition of limit. Thus, in order to find the limit
of f(x, y) as (x, y) approaches some point (a, b), you could first forget about y and just
let x approach a. This leads to

lim
x→a

f(x, y) = L(y).

This is a limit of one variable, because we’re freezing the y variable for the moment. The
result is some quantity which will depend on the value at which we froze y. Next you
could let y approach b, and compute

lim
y→b

L(y) = lim
y→b

˘
lim
x→a

f(x, y)
¯
.

The result of this computation would then be our answer to the question “what happens
to f(x, y) when (x, y) goes to (a, b)?”

The problem here is that there are at least two versions of this approach, depending
on which limit you take first. You could compute

lim
y→b

˘
lim
x→a

f(x, y)
¯

and lim
x→a

˘
lim
y→b

f(x, y)
¯
.

Do these always give the same result? And do they give the same result as the limit which
we defined above in §5.3. The answer to these questions is “yes, most of the time, but not
always.”

5.5. Theorem on Switching Limits. If lim(x,y)→(a,b) f(x, y) = L exists, then the
two iterated limits exist, and they are the same:

lim
x→a

lim
y→b

f(x, y) = lim
y→b

lim
x→a

f(x, y) = L.

Also, if lim(x,y)→(a,b) f(x, y) = L exists, and if x(t) and y(t) are any two functions with

lim
t→t0

x(t) = a, and lim
t→t0

y(t) = b,

(so that (x(t), y(t)) represents a path which approaches the point (a, b) as t→ t0) then

lim
t→t0

f(x(t), y(t)) = L.
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5.6. Limit examples. The function f(x, y) = (x2 − y2)/(x2 + y2) is defined every-
where on the plane, except at the origin. You could try to assign a value to f(0, 0) by
taking the limit of f(x, y) as x and y go to zero. This is what you find :

Consider the limits

A = lim
x→0

lim
y→0

x2 − y2

x2 + y2
and B = lim

y→0
lim
x→0

x2 − y2

x2 + y2
.

Then you can easily compute that A = 1 and B = −1. So here is an example where
switching the order of limits changes the outcome. The theorem tells us that the limit

lim
(x,y)→(0,0)

x2 − y2

x2 + y2

does not exist.

Note that to make this example we had to divide by zero at (0, 0).

Figure 4: The graph of a function which is discontinuous at the origin. (See Problem 19.)

Here is another example: consider the function

g(x, y) =
2xy

x2 + y2
.

Its domain is the whole plane, except the origin, where we once again would have to divide
by zero.

The iterated limits exist for this example. If you try to compute them you will find

lim
x→0

lim
y→0

2xy

x2 + y2
= 0, and lim

y→0
lim
x→0

2xy

x2 + y2
= 0.

Nevertheless, the limit lim(x,y)→(0,0) g(x, y) does not exist. One way to see that is to let
(x, y) approach the origin along a straight line, say the line with equation y = x. (What
happens along other lines is one of the exercises). You get

lim
x→0, y=x

g(x, y) = lim
x→0

g(x, x) = lim
x→0

2x · x
x2 + x2

= 1.

Conclusion: along the x-axis and along the y-axis g remains 0, but along the diagonal the
function has the value 1, so that its limit along the diagonal is 1.



18 1. FUNCTIONS OF TWO AND MORE VARIABLES.

6. Problems

16. Find the level sets of the functions f and g
from §5.6.

17. Compute the limits of the functions f and
g from §5.6 along the lines y = mx, where
m is a constant. Does the result depend on
m?

18. Consider the function

f(x, y) =

(
1 if y ≥ |x|
0 if y < |x|.

(i) Draw the graph of f . What is its do-
main?

(ii) Compute the two iterated limits

A = lim
x→0

lim
y→0

f(x, y)

and

B = lim
y→0

lim
x→0

f(x, y).

(iii) Compute lim(x,y)→(0,0) f(x, y) if it ex-
ists.

(iv) At which points (a, b) in the plane is the
function continuous?

(v) Answer the same questions for the function

g(x, y) =

(
1 if |x| ≤ y ≤ 2|x|
0 otherwise.

19. (i) Figure 4 shows the graph of

f(x, y) = (x2 − y2)/(x2 + y2)

and the xy-plane (the plane z = 0). The axes
are missing. Draw the x and y axes in the
figure.

(ii) It turns out that the graph of

g(x, y) = 2xy/(x2 + y2)

also looks like Figure 4. Assuming that Fig-
ure 4 is in fact the graph of g, draw the x and
y axes in Figure 4.

20. Let

h(x, y) =
x4 − y2

x4 + y2
.

(i) Compute the limit of h(x, y) as (x, y) ap-
proaches the origin along the line y = mx.
Does the result depend on m?

(ii) Compute the limit of h(x, y) as (x, y) ap-
proaches the origin along the parabola y =

mx2. Does the result depend on m?

(iii) Does the limit lim(x,y)→(0,0) h(x, y) ex-
ist?

(iv) Answer the same questions for the func-
tion

k(x, y) =
yx2

y2 + x4
.

21. The following function plays an important
role in the theory of heat conduction, the the-
ory of diffusion, and in probability theory. It is
called the “heat kernel” or “Gauss kernel”.

H(x, t) =
1
√
t
e−x

2/t?

Does the limit of H(x, t) at (0, 0) exist? Do
any of the iterated limits exist? More precisely,

(i) Find lim
x→0

lim
t↘0

H(x, t).

(ii) Find lim
t↘0

lim
x→0

H(x, t).

(The domain of this function is all points
(x, t) with t > 0 – why?)

A hint: How do you find the limit
lims↘0

1√
s
e−1/s? You substitute s = 1/z,

so when s ↘ 0 you have z → +∞, and
lims↘0

1√
s
e−1/s = limz→∞

√
ze−z . Now

use your math 221 limits.



CHAPTER 2

Derivatives

1. Partial Derivatives

The derivative f ′(x) of a function of one variable, y = f(x), measures a rate of change:
if you increase x by a small amount ∆x then y = f(x) also increases by a small amount

∆y. The ratio between these two changes is the derivative: f ′(x) ≈ ∆y
∆x

.

For a function z = f(x, y) of two variables there is a similar concept: if you change
x and/or y by a small amount then z will also change by a small amount, and there are
formulas relating the changes ∆x, ∆y and ∆z. Because there are many different ways in
which you can change x and y there are a few different formulas. We will encounter the
following versions of “the derivative of f(x, y)”:

– Freeze y and change x, or freeze x and change y: this leads to the so-called partial
derivatives.

– Simultaneously vary both x and y: the resulting change turns out to be the sum
of the changes you would get if you only varied x or only varied y, respectively. This will
follow from the chain rule, and the resulting formula is called the total derivative.

We begin with the partial derivatives.

1.1. Definition of Partial Derivatives. If z = f(x, y) is a function of two vari-
ables which is defined on an open domain G, then at any point (x, y) in that domain the
partial derivatives of f with respect to x and with respect to y are

(4)
∂f

∂x
(x, y) = lim

∆x→0

f(x+ ∆x, y)− f(x, y)

∆x

and

(5)
∂f

∂y
(x, y) = lim

∆y→0

f(x, y + ∆y)− f(x, y)

∆y

The following more convenient notation is used very often (because it’s so much
shorter):

(6) fx(x, y) =
∂f

∂x
(x, y), fy(x, y) =

∂f

∂y
(x, y).

When we are in a hurry we drop the “(x, y)” from our notation for derivatives.

1.2. Examples. Computing partial derivatives not harder than computing ordinary
derivatives. To find the partial derivative of a function with respect to x you just pretend
all other variables are constants and differentiate. Or, in other words, you could think of
the partial derivative of f(x, y) with respect to x as the ordinary derivative of the function
f in which you have frozen the variable y at some particular value.

For instance, the partial derivatives of the function f(x, y, z) = x2 sinπy of three
variables x, y, and z, are

fx = 2x sinπy, fy = πx2 cosπy and fz = 0.

19
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The function we chose doesn’t actually depend on z so the derivative with respect to z
vanishes.

2. Problems

22. Find the partial derivatives of the following
functions:

(i) f(x, y) = x2y3 − x3y2.

(ii) f(x, y) = cos(x2y) + y3.

(iii) f(x, y) =
xy

x2 + y
.

(iv) f(x, t) = (x+ t)4.

(v) f(x, t) = (x− t)4.

(vi) f(x, t) = sinωt cos
2πx

L
.

(vii) f(x, y) = ex
2+y2 .

(viii) f(x, y) = xy ln(xy).

(ix) f(x, y) =
p

1− x2 − y2.

(x) f(x, y, z) =
p
x2 + y2 + z2

(xi) f(u, v) = eu+v

(xii) f(x, y) = x tan(y).

(xiii) f(x, y) =
1

xy
.

23. Let f(x, y) = the distance from (x, y) to
the origin.

Find a formula for f , and compute

fx, fy , and
q
f2
x + f2

y .

24. Suppose f(t) and g(t) are single vari-
able differentiable functions. Find ∂z/∂x and
∂z/∂y for each of the following two variable
functions.

(i) z = f(x)g(y) (ii) z = f(xy)

(iii) z = f(x/y)

25. Let f be the distance to the square Q func-
tion from problem 4. Find the partial deriva-
tives fx and fy of f . (You will need your an-
swer to problem 4, in particular the description
of f as a “piecewise defined function”.)

3. The Chain Rule and friends

When you compute the partial derivative of a function with respect to a variable x
you pretend all other variables are constants, and just differentiate with respect to x, just
as you would in first semester calculus. There is therefore no need to state a product
rule or quotient rule, because these are exactly the same as for functions of one variable.
The chain rule on the other hand is different: there is a chain rule for functions of several
variables, but it has more terms than the chain rule from one-variable calculus. There are
several related topics which fit together in a discussion of the chain rule, namely Linear
Approximation, Tangent Planes to a Graph, and The Total Derivative. We’ll go
through these one at a time in the section.

Throughout this whole section we will assume that

(7)


z = f(x, y) is a function on some domain whose partial derivatives

fx(x, y) and fy(x, y) are continuous on this domain.

3.1. Linear approximation of a graph. The key to the chain rule is the linear
approximation formula. This formula tells us approximately how much a function z =
f(x, y) of two variables changes if both variables are subjected to a small change.
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You can change (x0, y0) to
(x0 + ∆x, y0 + ∆y) in two
steps: first keep y fixed and
increase x by ∆x, then keep
x fixed and increase y by ∆y

Figure 1: A picture of the calculations in (8)

To arrive at the formula assume that x is increased from x0 to x0 + ∆x, and that y
is similarly increased from y0 to y0 + ∆y. Then the change in f(x, y) is given by

∆f = f(x0 + ∆x, y0 + ∆y)− f(x0, y0)(8)

= f(x0 + ∆x, y0 + ∆y)− f(x0 + ∆x, y0)| {z }
only y changes

+ f(x0 + ∆x, y0)− f(x0, y0)| {z }
only x changes

= fy(x0 + ∆x, ỹ)∆y + fx(x̃, y0)∆x (use Mean Value Theorem twice)

= fx(x̃, y0)∆x+ fy(x0 + ∆x, ỹ)∆y (write x terms first)

The numbers x̃, ỹ are provided by the Mean Value Theorem, so, x̃ lies between x0 and
x0 +∆x, and ỹ lies between y0 and y0 +∆y. The numbers x̃ and ỹ are otherwise unknown,
but the assumption (7) that the partial derivatives fx and fy are continuous allows us
to get rid of x̃ and ỹ if we assume that ∆x and ∆y are small. So assume that ∆x
and ∆y are indeed “small.” Then, since x̃ lies between x0 and x0 + ∆x we will have
fx(x̃, y0 + ∆y) ≈ fx(x0, y0) and similarly, we will have fy(x0, ỹ) ≈ fy(x0, y0). We can
make this a bit more precise by saying that there are small numbers ex and ey such that

fx(x̃, y0) = fx(x0, y0) + ex, and fy(x0 + ∆x, ỹ) = fy(x0, y0) + ey.

Putting this in (8) we get the linear approximation formula:

(9) f(x0 + ∆x, y0 + ∆y) = f(x0, y0) + fx(x0, y0)∆x+ fy(x0, y0)∆y| {z }
linear approximation

+ ex∆x+ ey∆y| {z }
error

in which ex and ey depend on ∆x,∆y, but they satisfy

lim
(∆x,∆y)→(0,0)

ex = lim
(∆x,∆y)→(0,0)

ey = 0.

If we ignore the “error term” then we find the following more commonly used form of the
linear approximation formula:

(10) f(x0 + ∆x, y0 + ∆y) ≈ f(x0, y0) + fx(x0, y0)∆x+ fy(x0, y0)∆y

Another way of writing this equation appears if you let ∆f stand for the change in f , i.e.
∆f = f(x0 + ∆x, y0 + ∆y)− f(x0, y0). You then get

(11) ∆f ≈ fx(x0, y0)∆x+ fy(x0, y0)∆y =
∂f

∂x
∆x+

∂f

∂y
∆y.

It is important to realize that this is only an approximate equation, and that according
to (9) the error (difference between left and right hand sides) is given by ex∆x+ ey∆y =
“o(∆x) + o(∆y)”; the error is “small ” compared to ∆x and ∆y. The smaller one chooses
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∆x and ∆y, the better the approximation. This leads many to say that there is an exact
equation when ∆x and ∆y are “infinitely small,” and in this case one writes

(12) df =
∂f

∂x
dx+

∂f

∂y
dy.

The meaning of this equation is that infinitesimally small changes in x and y, of magnitudes
dx and dy, respectively, lead to an infinitesimally small change in f of magnitude df , and
that df , dx, and dy are related by (12). Even though it is very difficult to make sense of
the “infinitely small” quantities dx, dy, df , in (12), this notation is widely used, because
the make-belief it entails allows one to ignore the more awkward error terms in (9).

3.2. The tangent plane to a graph. We return to the linear approximation for-
mula (10). With

z = f(x, y), x = x0 + ∆x, y = y0 + ∆y

this is the same as

(13) z = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

This is the equation for a plane which we call the tangent plane to the graph of f at the
point (x0, y0, f(x0, y0)).

Figure 2: Top: The graph of the linear approximation of f (graph of f itself is not shown – see
the bottom figure). If you increase x by ∆x, then f will increase by approximately fx∆x, and if you
increase y by ∆y, then f increases by approximately fy∆y. If you increase x and y by ∆x and ∆y

at the same time, then f increases by roughly fx∆x + fy∆y. The vertical dotted line behind the
parallelogram represents this increase in f . Bottom: The graph of a function, and of its tangent
plane at some point (x0, y0, z0). The tangent plane is the graph of the linear approximation to f .
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Figure 3: The graph of z = xy and the tangent plane at the origin.

3.3. Example: tangent plane to the sphere. The point (x0, y0, z0) lies on the
upper half of the sphere with radius 4 centered at the origin. Find an equation for the
tangent plane to the sphere at that point, if x0 = 1 and y0 = 3.

Solution: The equation for the sphere is x2 + y2 + z2 = 42 = 16, so the upper half is

the graph of the function f(x, y) =
p

16− x2 − y2. The z coordinate of the given point

is therefore z0 =
√

16− 12 − 32 =
√

6. The partial derivatives of f at (x0, y0) = (1, 3) are

∂f

∂x
=

−x0p
16− x2

0 − y2
0

= − 1√
6
,

∂f

∂y
=

−y0p
16− x2

0 − y2
0

= − 3√
6
.

The equation for the tangent plane is then

z =
√

6− 1√
6

(x− 1)− 3√
6

(y − 3) =
16√

6
− x√

6
− 3y√

6
.

3.4. Example: tangent planes to the saddle surface. Find the equation for the
tangent plane to the saddle surface z = xy at the origin.

Solution: The saddle surface is the graph of the function f(x, y) = xy whose partial
derivatives are fx(x, y) = y and fy(x, y) = x. By Eq. (13) the tangent plane to any point
(x0, y0, x0y0) on the graph is given by

(14) z = x0y0 + y0(x− x0) + x0(y − y0).

At the origin we have x0 = y0 = 0, so the tangent plane there is given by

z = 0,

i.e. it is just the xy-plane.
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3.5. Example: another tangent plane to the saddle surface. Find the equa-
tion for the tangent plane to the saddle surface z = xy at the point (2, 1, 2). Where does
this plane intersect the coordinate axes?

Solution: This is almost the same problem as before. The only difference is that we
are trying to find the tangent plane at a point other than the origin. To get the tangent
plane at the point with x0 = 2, y0 = 1 we substitute and find

z = 2 + 1 · (x− 2) + 2 · (y − 1) = −2 + x+ 2y.

The intersections with the x, y and z axes are, respectively, (2, 0, 0), (0, 1, 0), and (0, 0,−2).

3.6. Follow-up problem – intersection of tangent plane and graph. Find
those points at which the tangent plane to the graph at (2, 1, 2) intersects the saddle surface
itself.

Solution: We have just found that the tangent plane is the graph of z = −2+x+2y,
while we are given that the saddle surface is the graph of z = xy. Any point (x, y, z) lies
in the intersection exactly when its coordinates satisfy both equations. Eliminating z we
see that (x, y) must satisfy

xy = −2 + x+ 2y, or, equivalently, xy − x− 2y + 2 = 0.

This is a quadratic equation, so you would normally expect a circle, ellipse, or hyperbola,
but in this case the right hand side can be factored:

xy − x− 2y + 2 = (x− 2)(y − 1).

So we see that (x, y, z) lies on the intersection of the tangent plane if and only if either

(15) x = 2, z = 2y, and y is arbitrary, or y = 1, z = x, and x is arbitrary.

You can describe the points we found in vector form, which leads to

(16) ~x =

0@ 2
y
2y

1A =

0@2
0
0

1A+ y

0@0
1
2

1A and ~x =

0@x1
x

1A =

0@0
1
0

1A+ x

0@1
0
1

1A .

From this you see that the intersection consists of two straight lines. 1

3.7. The Chain Rule. Given two functions x = x(t), y = y(t) of one variable,
and a function z = f(x, y) of two variables, what is the derivative of the function g(t) =
f(x(t), y(t))?

If t increases by an amount ∆t from t0 to t0 + ∆t, then x and y will increase by
amounts ∆x and ∆y,

∆x = x(t0 + ∆t)− x0, ∆y = y(t0 + ∆t)− y0,

where x0 = x(t0) and y0 = y(t0). By the linear approximation formula (8) one then has

∆f

∆t
= fx(x0, y0)

∆x

∆t
+ fy(x0, y0)

∆y

∆t
+ ex

∆x

∆t
+ ey

∆x

∆t

As we let ∆t → 0 the quotients ∆x/∆t and ∆y/∆t converge to x′(t0) and y′(t0), while
the errors ex and ey converge to zero, so we get

(17)
df(x(t), y(t))

dt
= fx(x0, y0)x′(t0) + fy(x0, y0)y′(t0).

since x̃ tends to x0 and ỹ tends to y0 as ∆t→ 0.

This formula is often also written as

(18)
df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

1 If the last calculation (going from (15) to (16)) is a mystery, then this would be a very good
time to review vectors and parametric representations of lines from math 222.
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This formula becomes easy to remember if you interpret the first term as “the change in f
caused by the change in x” and the second term as “the change in f caused by the change
in y.”

In the way (18) is written a number of details are swept under the rug: the two

derivatives dx
dt

and dy
dt

are ordinary (math 221) derivatives of the two functions x(t) and

y(t); the two partial derivatives ∂f
∂x

and ∂f
∂y

are the partial derivatives of f in which one

has substituted x(t) and y(t). A more correct way of writing the equation would be

df(x(t), y(t))

dt
=
∂f

∂x
(x(t), y(t))x′(t) +

∂f

∂y
(x(t), y(t))y′(t).

Many people find (18) easier on the eyes, so that is what we will write.

3.8. The difference between d and ∂. Compare (18) with the linear approxima-
tion formula (12) with infinitesimal small quantities. Equation (18) is just (12) in which
one has divided both sides by dt. In contrast to equation (12) which contains the strange
“infinitely small quantities” dx, dy, df , equation (18) contains the derivatives dx

dt
, etc.

which are well-defined.

Note that we have a breakdown of Leibniz’s notation: If you ignore the distinction
between “d” and “∂”, and just cancel dx and ∂x, and also dy and ∂y on the right then
you end up with

df

dt
=
∂f

dt
+
∂f

dt
= 2

∂f

dt
,

which doesn’t make a lot of sense. The moral: don’t cancel dx against ∂x!

4. Problems

26. Find the linear approximation to f(x, y) at
the point (a, b) in the following cases:

(i) f(x, y) = xy2, (a, b) = (3, 1).

(ii) f(x, y) = x/y2, (a, b) = (3, 1).

(iii) f(x, y) = sinx+cos y, (a, b) = (π, π).

(iv) f(x, y) = xy/(x+ y), (a, b) = (3, 1).

27. Find an equation for the plane tan-
gent to the graph of f(x, y) = sin(xy) at
(π, 1/2, 1).

28. Find an equation for the plane tangent to
the graph of f(x, y) = x2 +y3 at (3, 1, 10).

29. Find an equation for the plane tangent to
the graph of f(x, y) = x ln(xy) at (2, 1/2, 0).

30. Find an equation for the tangent plane to
the graph of f(x, y) = x2 − 2xy at the point
with x = 2, y = 1.

Find the intersection of the graph of f
and the tangent plane you found. Show that
it consists of two lines. (Hint: compare with
the example in §3.6).

31. (i) Find an equation for the tangent plane
to the graph of f(x, y) = xy at the point

(a, b, ab). Here a and b are constants which
will appear in your answer.

(ii) Show that the intersection of the tan-
gent plane and the graph contains two straight
lines.

32. (i) Find an equation for the plane tangent

to the surface defined by 2x2 + 3y2 − z2 = 4

at (1, 1,−1). (Hint: first write the surface as
a graph z = f(x, y)).

(ii) The same question at the point (1, 1,+1).

33. (i) Suppose you have computed the
two partial derivatives of a function z =
f(x0, y0), and you found fx(x0, y0) = A and
fy(x0, y0) = B. Find a normal vector to the
tangent plane of the graph of z = f(x, y) at
(x0, y0, z0).

(Hint: If you know the equation for a
plane, then how do you find a normal vector
to this plane? Review math 222 for the an-
swer.)

(ii) Find an equation in vector form for the line

normal to x2 + 4y2 = 2z at (2, 1, 4). (A line
is normal to the graph of a function at some
point P , if it passes to through P , and if it
is perpendicular to the tangent plane to the
graph at P .)



26 2. DERIVATIVES

34. Imagine a differentiable function, f(x, y).
Make a good drawing of the function f and
show how fx(a, b) and fy(a, b) are the slopes
of two lines which are tangent to the graph
at (a, b). Indicate clearly which two lines you
mean, and describe how they are defined.

(Can’t think of a nice graph? Take some-
thing like the bottom drawing in Figure 2.)

35. A bug is crawling on the surface of a hot
plate, the temperature of which at the point x
units to the right of the lower left corner and

y units up from the lower left corner is given
by T (x, y) = 100− x2 − 3y3.

(i) If the bug is at the point (2, 1), in
what direction should it move to cool off the
fastest?

(ii) If the bug is at the point (1, 3), in what
direction should it move in order to maintain
its temperature?

36. Let f be as in problem 29. Use linear
approximation to approximate f(1.98, 0.4) by
hand. Compare your answer with the actual
value of f(1.98, 0.4) (you’ll need a calcula-
tor).

5. Gradients

5.1. The gradient vector of a function. The right hand side in the chain rule
(17) can be written as a dot-product of two vectors, namely

(19)
df

dt
=

„
fx(x, y)
fy(x, y)

«
···
„
x′(t)
y′(t)

«
It often turns out to be useful to do this, so the vector containing the derivatives of f has
been given a name. It is called the gradient of f , and it is written as

(20) ~∇f(x, y) =

„
fx(x, y)
fy(x, y)

«
The symbol ~∇ is pronounced “nabla.”

The chain rule, written in vector form, looks like this:

(21)
df(~x(t))

dt
= ~∇f(x(t)) ··· ~x′(t)

The linear approximation formula (10) can be rewritten more compactly using the gradient
vector:

(22) f(~x0 + ∆~x) ≈ f(~x0) + ~∇f(~x0) ···∆~x.

5.2. The gradient as the “direction of greatest increase” for a function f .
The formula

(23) ~a ··· ~b = ‖~a‖ ‖~b‖ cos∠(~a,~b)

for the dot product leads us to a very useful interpretation of the gradient.

If you are at a point ~x0 (P in figure 4) and you are allowed to make a small step ∆~x
in any direction you like, but of prescribed length, then which way do you go if you want
to increase f as much as possible? And where do you go if, instead, you want to decrease
f as much as possible? What if you want to keep f the same?

From (22) we see that the change in f is (approximately) given by

∆f
def
= f(~x + ∆~x)− f(~x)

(22)
≈ ~∇f ···∆~x (23)

= ‖ ~∇f‖ ‖∆~x‖ cos θ

where θ is the angle between the gradient ~∇f and the vector ∆~x which represents the

step we take. In this formula the lengths ~∇f and ‖∆~x‖ are fixed, and the angle θ is the
only thing we can change. Therefore the largest change in f results if cos θ = +1, the
smallest when cos θ = −1, and no change will result if cos θ = 0. So we conclude

• To increase f as much as possible choose ∆~x in the direction of the gradient
~∇f ,
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~∇f(P )

f = 0.0

-0.6

-0.3

0.3

0.6

AB

CD

P

Figure 4: The gradient as direction of fastest increase: if you are at a point P , and you are allowed

to jump to any point at a given fixed distance from P , and if you only know ~∇f(P ), then the linear
approximation formula tells you that (i) to maximize f you follow the gradient (choose A); to minimize

f you go in the direction opposite to ~∇f(P ) (choose D); to keep f fixed you move perpendicular to
the gradient (choose B or C).

• To decrease f as much as possible choose ∆~x in the direction opposite to the

gradient ~∇f , i.e. in the direction of − ~∇f ,
• To keep f constant choose ∆~x perpendicular to the gradient.

5.3. The gradient is perpendicular to the level curve. Suppose that some level
set of a function y = f(x, y) is a curve, and suppose that we have a parametric represen-

tation ~x(t) =
“
x(t)
y(t)

”
of this curve. This means that x(t) and y(t) satisfy f(x(t), y(t)) = C

for some constant C. By the chain rule we then get

0 =
df(~x(t))

dt
= ~∇f(~x(t)) ··· ~x′(t),

which tells us that the tangent vector ~x′(t) to the level set is perpendicular to the gradient
~∇f(~x(t)) of the function.

Add: the equation for the tangent line to a level curve of a function
f(x, y) = C at a given point ~x0 = ( x0

y0 ) is given by

~∇f(~x0) ··· (~x− ~x0) = 0,

or, equivalently,

∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0) = 0.

5.4. The chain rule and the gradient of a function of three variables. So
far we have only looked at the gradient of a function of two variables. But for a function
of three variables there is a very similar definition, and the facts we have discovered have
similar counterparts. Let me summarize these definitions and facts, going into as few
details as possible.
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f(x, y) = 0(a, b)

~∇f(a, b)

Figure 5: The zero set of the function f(x, y) = x2 − y2 + y3, and its gradient at various points on
this zero set.

If u = f(x, y, z) is a function of three variables, then its gradient is defined to be the
vector

~∇f(x, y, z) =

0@fx(x, y, z)
fy(x, y, z)
fz(x, y, z)

1A , or ~∇f(~x) =

0@fx(~x)
fy(~x)
fz(~x)

1A .

The chain rule in this context says that, if x = x(t), y = y(t), and z = z(t) are functions
of one variable, then the derivative of the function you get by substituting x(t), y(t), z(t)
in f is given by any of the following three equivalent formulas

df(x(t), y(t), z(t))

dt
= fx(x(t), y(t), z(t))x′(t) + fy(x(t), y(t), z(t))y′(t) + fz(x(t), y(t), z(t))z′(t)

=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂y

dy

dt

= ~∇f(~x(t)) ··· ~x′(t), where ~x(t) =

0@x(t)
y(t)
z(t)

1A .

The linear approximation formula of the function f at some point (x0, y0, z0), which gives
you an approximation of the amount by which f increases if you go from (x0, y0, z0) to
(x, y, z) = (x0 + ∆x, y0 + ∆y, z0 + ∆z), is as follows:

(24) ∆f = f(x, y, z)− f(x0, y0, z0) ≈ ∂f

∂x
· (x− x0) +

∂f

∂y
· (y − y0) +

∂f

∂z
· (z − z0),

in which the partial derivatives are to be evaluated at (x0, y0, z0). Compare this with the
two variable version (9). In vector form we have

(25) ∆f = f(~x0 + ∆~x)− f(~x0) ≈ ~∇f(~x0) ···∆~x, where ~x0 =

0@x0

y0

z0

1A , ∆~x =

0@∆x
∆y
∆x

1A .

This is the same formula as in the two-variable case, where we had (22). The discussion
about “direction of steepest increase” applies to the three variable case without change.
Thus, if you are at a point ~x0, and you are allowed to change your position by a small
vector ∆~x of a prescribed length, then you choose ∆~x in the direction of the gradient
~∇f(~x) if you want to increase f as much as possible; you choose ∆~x in the direction of
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− ~∇f(~x) if you want to decrease f as much as possible; and you choose ∆~x perpendicular

to ~∇f(~x) if you want to keep f constant.

5.5. Tangent plane to a level set. If t = f(x, y, z) is a function of three vari-
ables then it is hard to visualize its graph, since you would need to draw four mutually
perpendicular axes, something we, three dimensional creatures, cannot do. However, you
can try to visualize the level sets of the function. The level set at level C consists, by
definition, of all points in three dimensional space whose coordinates satisfy the equation
f(x, y, z) = C.

For instance, the unit sphere is given by the equation x2 + y2 + z2 = 1, so it is the
level set at level 1 of the function f(x, y, z) = x2 + y2 + z2. The sphere with radius R is
the level set at level R2.

Consider any function of three variables with continuous partial derivatives, and let
(x0, y0, z0) be some point on the level set with level C (thus f(x0, y0, z0) = C.) Near this
point we can use the linear approximation to f to approximate the equation for the level
set of f . We get

0 = f(x, y, z)− f(x0, y0, z0) ≈ ∂f

∂x
· (x− x0) +

∂f

∂y
· (y − y0) +

∂f

∂z
· (z − z0),

where, as in (24), the partial derivatives are to be computed at the given point (x0, y0, z0).
They are, in particular, constants (they depend on (x0, y0, z0) but not on (x, y, z).) Thus
we see that near any particular point on the level set of a function we can approximate
the equation for the level set by

(26)
∂f

∂x
· (x− x0) +

∂f

∂y
· (y − y0) +

∂f

∂z
· (z − z0) = 0.

If at least one of the partial derivatives at (x0, y0, z0) is non zero, then this is the equation
of a plane. We call this plane the tangent plane to the level set.

In vector form the equation for the tangent plane to a level set of f at a point with
position vector ~x0 can be written as

(27) ~∇f(~x0) ··· (~x− ~x0) = 0.

From this equation you see that, just as in the case (§5.3) of level curves of a function

of two variables, the gradient ~∇f(~x0) is perpendicular to the tangent plane of the
level set of the function f at the point ~x0.

5.6. Example. Find the linear approximation of F (x, u, v) = e−u(x − v)2 and
tangent plane to its level set at x = 1, u = 2, v = 5

Solution: At the given values of x, u, v on has F (1, 2, 5) = e−2(1− 5)2 = 16/e2. The
partial derivatives of F are

Fx = 2(x− v)e−u, Fu = −e−u(x− v)2, Fv = −2(x− v)e−u,

which at (x, u, v) = (1, 2, 5) reduces to Fx = −8/e2, Fu = −16/e2 and Fv = +8/e2. If
(x, u, v) is close to (1, 2, 5), then the linear approximation formula tells us that

F (x, u, v) ≈ F (1, 2, 5)− 8

e2
(x− 1)− 16

e2
(u− 2) +

8

e2
(v − 5)

or, in “∆x” notation,

F (1 + ∆x, 2 + ∆u, 5 + ∆v) ≈ F (1, 2, 5)− 8

e2
∆x− 16

e2
∆u+

8

e2
∆v.

The equation for the tangent plane to the level set of F at the point (1, 2, 5) is therefore

− 8

e2
(x− 1)− 16

e2
(u− 2) +

8

e2
(v − 5) = 0,
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or, after cancelling e2’s and 8’s: (x − 1) + 2(u − 2) − (v − 5) = 0. Further simplification
shows that the equation for the tangent plane is

x+ 2u− v = 0.

6. Implicit Functions

In first semester calculus you learned a procedure for finding derivatives of implicitly
defined functions. If some function y = f(x) was not given by an explicit formula, but
rather by an implicit equation

(28) F (x, y) = 0

then there was a way to find the derivative of y = f(x) from the above equation only. But
there was no formula for f ′(x). The reason is that the formula for the derivative f ′(x)
involves the partial derivatives of F .

In this section we review implicit differentiation again. The following theorem is
about the zero set of the function F . One usually thinks of the zero set of a function of
two variables as a curve (“an equation defines a curve”) but this is not always so. The
theorem below gives you a way to find out if the zero set is really a curve, at least near
any given point on the zero set which you happen to know.

�

�

�

�
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������

���
���
���
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Figure 6: The Implicit Function Theorem. The zero set of a function F (x, y) does not have to be
the graph of a function, but if at some point (A) on the zero set you have Fy 6= 0, then, near that point
A, the zero set is the graph of a function y = f(x). If Fx 6= 0 at some point (B), then near B the
zero set is also the graph of a function, provided you let x be a function of y: x = g(y). Exceptional
points: At some points, like C and D in this figure, the level set of F cannot be represented as the
graph of a function y = f(x), nor can it be represented as a graph of the type x = g(y). At such
points the Implicit Function Theorem implies that both Fx = 0 and Fy = 0.
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6.1. The Implicit Function Theorem. Let F (x, y) be a function defined on some
plane domain with continuous partial derivatives in that domain, and suppose that a point
(x0, y0) in the zero set of F is given.

If ∂F
∂y

(x0, y0) 6= 0 then there is a small rectangle centered at (x0, y0) such that within

this rectangle the zero set of F is the graph of a function y = f(x). The derivative of this
function is

(29) f ′(x) =
dy

dx
= −Fx(x, f(x))

Fy(x, f(x))
.

If ∂F
∂x

(x0, y0) 6= 0 then there is a small rectangle centered at (x0, y0) such that within
this rectangle the zero set of F is the graph of a function x = g(y). The derivative of this
function is

(30) g′(y) =
dx

dy
= −Fy(g(y), y)

Fx(g(y), y)
.

A proof, which will help in understanding the theorem, will be given in class. There is
no need to memorize the formulas (29) and (30). You can get them by using the method
of implicit differentiation which you learned in math 221. For instance, suppose that the
graph of the function y = f(x) gives you a piece of the zero set of F . This means that
F (x, f(x)) = 0 for all x. Differentiating both sides of this equation leads you, via the
chain rule, to

(31) 0 =
dF (x, f(x))

dx
= Fx(x, f(x)) + Fy(x, f(x))f ′(x).

Solve this for f ′(x) and you get

f ′(x) =
dy

dx
= −Fx(x, f(x))

Fy(x, f(x))
,

which is what the theorem claims.

6.2. The Implicit Function Theorem with more variables. There are many
variations and extensions of Theorem 6.1. The simplest is to consider the level set of a
function of three rather than two variables. Suppose F is a function of three variables,
with continuous partial derivatives, and consider the set of points defined by the equation

F (x, y, z) = C.

This is the level set of F at level C.

If
∂F

∂y
(x0, y0, z0) 6= 0,

then near (x0, y0, z0) the level set of F is the graph of a function y = g(x, z), meaning
that the function y = g(x, z) satisfies

G(x, g(x, z), z) = 0.

Hence you can find the partial derivatives of this function by implicit differentiation. The
result is

(32)
∂y

∂x
= gx(x, z) = −Fx(x, y, z)

Fy(x, y, z)
,

∂y

∂z
= gz(x, z) = −Fz(x, y, z)

Fy(x, y, z)
,

where y = g(x, z).
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6.3. Example – The saddle surface again. The saddle surface is the graph of
the function z = xy, which we can think of as the zero set of the function

F (x, y, z) = z − xy.

The point (2, 3, 6) lies on the saddle surface, and at this point the partial derivatives of F
are

Fx =
∂(z − xy)

∂x
= y = 3, Fy =

∂(z − xy)

∂y
= x = 2, Fz =

∂(z − xy)

∂z
= 1.

Since Fx(2, 3, 6) = y = 3 is non zero, the Implicit Function Theorem tells us that near
this point the zero set of F is the graph of a function x = g(y, z). Solving F = 0 for x we
see that his function is in fact

x = g(y, z) =
z

y
.

The partial derivatives of g are easy to compute in this example, but even if we couldn’t
find them directly, the Implicit Function Theorem tells us that

gy(3, 6) = −Fy(2, 3, 6)

Fx(2, 3, 6)
= −2

3
, gz(3, 6) = −Fz(2, 3, 6)

Fx(2, 3, 6)
= −1

3
.

7. The Chain Rule with more Independent Variables;
Coordinate Transformations

The chain rule we have seen so far tells us how to differentiate expressions of the form
f(x(t), y(t)). Such expressions are the result of substituting two functions x(t), y(t) of one
variable t in one function of two variables z = f(x, y). What do you do if the functions
x, y that get substituted in f(x, y) depend on not one but two (or more) variables? The
answer is easy: you do exactly the same.

For instance, suppose you want to substitute x = x(u, v) and y = y(u, v) in a function
z = f(x, y), resulting in a function F (u, v) = f(x(u, v), y(u, v)), and suppose you want
find the partial derivatives of F with respect to u. To compute this you keep v fixed and
regard u as the variable – then x(u, v) and y(u, v) are functions of one variable u and you
apply the chain rule you already know. This leads to

∂F

∂u
=
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u

The only difference with (18) is that we have written the derivatives of x and y as partial
derivatives. We do this to indicate that in computing this derivative we momentarily
consider x as a function of u, but later we may want to vary v again.

The same considerations lead to the partial derivative of F with respect to v:

∂F

∂v
=
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v
.

7.1. An example without context. Suppose f is some function of two variables
and we want to find the partial derivatives of

g(u, v, w) = f(2uv, u2 + w2).

By this we mean that g is the result of substituting x = 2uv and y = u2 + w2 in f . Note
that g is a function of three vairables, and f is a function of two variables.
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Figure 7: After choosing different x and y axes, A and B will assign different x, y coordinates to the
same point in the plane. Equations (33) give the relation between these two sets of coordinates.

The chain rule tells us that the derivatives of g are

∂g

∂u
=
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u
= 2v

∂f

∂x
+ 2u

∂f

∂y

∂g

∂v
=
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v
= 2u

∂f

∂x

∂g

∂w
=
∂f

∂x

∂x

∂w
+
∂f

∂y

∂y

∂w
= 2w

∂f

∂y

7.2. Example: a rotated coordinate system. We are used to specifying the
location of points in the plane by giving their x and y coordinates. In an abstract math-
ematical setting there is nothing wrong with this, but in a real-world situation you have
to define what you mean by x and y coordinates, and it turns out that different people
will choose different but related definitions. For instance, two people A and B could have
chosen the same origin, but their axes could be rotated with respect to each other. See
Figure 7. If A’s coordinates are called x, y and B’s coordinates are X,Y then it should be
possible to find A’s coordinates of a point if you know what coordinates B assigns to this
point – given X,Y what are x, y?

One way to derive the equations relating X,Y to x, y is to use complex numbers:
the complex number x + iy is obtained from the complex number X + iY by rotating it
through an angle α. We know that you can do this by multiplying with eiα, so

x+ iy = eiα(X + iY ).

Using Euler’s formula eiα = cosα+ i sinα you find

(33)


x = X cosα− Y sinα,

y = X sinα+ Y cosα.

Suppose both A and B are measuring the temperature T at various points in the plane.
A predicts the temperature at various points in the plane: he says that at the point with
coordinates (x, y) the temperature will be T (x, y). In fact he has also found the partial
derivatives ∂T

∂x
and ∂T

∂y
.

Equipped with the X,Y → x, y conversion (33) B can now take A’s formula for the
temperature and express it in terms of her own X,Y coordinates. If we write TA(x, y)
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for the temperature at the point whose A-coordinates are (x, y) and TB(X,Y ) for the
temperature at the point whose B-coordinates are (X,Y ), then we have

TB(X,Y ) = TA(x, y)

= TA(X cosα− Y sinα,X sinα+ Y cosα).

What is the relation between the partial derivatives of the temperatures as computed by
A and by B? The chain rule gives the answer:

∂TB
∂X

=
∂

∂X

n
TA(X cosα− Y sinα| {z }

=x

, X sinα+ Y cosα| {z }
=y

o
=
∂TA
∂x

cosα+
∂TA
∂y

sinα.

7.3. Another example – Polar coordinates. Suppose a quantity P is given in
terms of Cartesian coordinates x and y: P = f(x, y). How does P change if you vary the
polar coordinates r and θ, i.e. what are the partial derivatives of P with respect to r and
θ?

To answer this question we must write P as a function of r and θ. Recall that the
relation between Cartesian Coordinates and Polar Coordinates is

(34) x = r cos θ, y = r sin θ.

Therefore P = f(x, y) = f(r cos θ, r sin θ) and we get

(35)
∂P

∂r
= cos θ

∂f

∂x
+ sin θ

∂f

∂y
,

∂P

∂θ
= −r sin θ

∂f

∂x
+ r cos θ

∂f

∂y

Since the function f always gives you the value of the quantity P , these relations are
usually written in this way:

(36)
∂P

∂r
= cos θ

∂P

∂x
+ sin θ

∂P

∂y
,

∂P

∂θ
= −r sin θ

∂P

∂x
+ r cos θ

∂P

∂y

Using the relation (34) between polar and Cartesian coordinates you can write these
equations in yet another way:

(37)
∂P

∂r
=
x

r

∂P

∂x
+
y

r

∂P

∂y
,

∂P

∂θ
= −y ∂P

∂x
+ x

∂P

∂y

Problems about the Gradient and Level Curves

37. Compute the gradient of each function in Problem 22

38. Show that for any two differentiable functions f and g one has

~∇(f ± g) = ~∇f ± ~∇g, ~∇(fg) = f ~∇g + g ~∇f, ~∇
`f
g

´
=
g ~∇f − f ~∇g

g2
.

In other words the sum-, product- and quotient rules for differentiation also apply to the gradient.

39. (i) Draw the level sets of the function f(x, y) = x2 + 4y2 at levels 0, 4, 16.

(ii) Find the points on the level set f(x, y) = 4 where the gradient is parallel to the vector
`

1
1

´
. What

can you say about the tangent line to the level set at those points? Draw the gradient vectors, and
the tangent lines at the points you just found.

Hint: two non-zero vectors ~v and ~w are parallel if there is a number s such that ~v = s~w.

(iii) Repeat the same two problems for the function g(x, y) = 4xy2.

40. (i) Draw the zero set of the function f(x, y, z) = x2 + y2 − 2z.

(ii) Find all points on the zero set of the function f where the gradient is parallel to the vector

~v =
“

1
1
2

”
.
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41. The level sets of a function z = f(x, y) are often curves. Must they always be curves? Could the
zero set of a function be a solid square (e.g. all points (x, y) with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1)?

42. The picture above shows you some level sets of a function. On the bottom left the level sets are
further apart, on the top right they are more bunched together. Where is the gradient the larger:
bottom left, or top right?

43. Have a look at Figure 5. Assume the function differentiable at the origin.

(i) What can you say about the gradient ~∇f at the origin?

(ii) Where is the function positive and where is it negative (assume that the whole zero set is drawn).

44. Consider the unit circle C with equation x2 +y2 = 1. The unit circle C is a level set of the function
F (x, y) = x2 + y2.

(i) Where on C is Fy 6= 0? Near which points P on C can one represent C as a graph of the form
y = f(x)?

(ii) Near which points P on C can one represent C as a graph of the form x = g(y)?

45. Here is the zero set of a function z = f(x, y) (in bold). The function is only zero on the bold curve,
it is nonzero everywhere else.

(i) One of the two other curves above is the level set f(x, y) = −0.1. Which one is it, A or B? As
always, explain your answer.

(ii) Draw a possible level set f(x, y) = +0.1.

(iii) Draw possible gradients on the zero set (similar to Figure 5).

46. Here is the zero set of a differentiable function z = f(x, y).
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(i) Explain why the Implicit Function Theorem (§6.1) implies that ~∇f = ~0 at the two points A and
B.

(ii) Consider the function g(x, y) = f(x, y)2. Show that f and g have the same zero set.

(iii) Show that ~∇g = 2f ~∇f . (Hint: look at problem 38).

(iv) Show that ~∇g = ~0 at all points on the zero set of g.

47. (i) Compute the gradient of the “distance to the square function” f from problems 4 and 25.

(ii) How much is | ~∇f |?

(iii) Make a drawing of the level sets of f , and the gradient ~∇f .

48. Let f(x, y) = ln(2 + 2x+ ey).

(i) Compute the gradient of f at the point (x0, y0) with position vector ~x0 =
`

1
0

´
.

(ii) You are allowed to choose a point at a distance 0.01 from the point (1, 0). Where would you
choose the new point if you want f to be as large as possible? (Hint: review the linear approximation
formula and subsequent discussion about the gradient as direction of greatest increase in §5.2)

(iii) Is your answer to the previous the exact answer, or only an approximation? I.e., could someone
else find a point at distance 0.01 from (1, 0) at which f has a (slightly) higher value than at the point
you found?

(iv) The level set C of f through the point (1, 0) happens to be the graph of a function y = g(x).
Find that function.

(v) Find a normal vector to the tangent line to C at the point (1, 0). Find an equation for the tangent
line to C at (1, 0).

(vi) How much is g(1)? Find two different ways to compute g′(1) based on the work you have done
so far.

49. Let (a, b, c) be a point on the sphere with radius R centered at the origin. Find an equation for the
tangent plane to the sphere at (a, b, c). Simplify your answer as much as possible (a, b, c, and R will
show up in your answer of course.)

About the chain rule and coordinate transformations

50. Use the chain rule to compute dz/dt for z = sin(x2 + y2), x = t2 + 3, y = t3.

51. Use the chain rule to compute dz/dt for z = x2y, x = sin(t), y = t2 + 1.

52. Use the chain rule to compute ∂z/∂s and ∂z/∂t for z = x2y, x = sin(st), y = t2 + s2.

53. Use the chain rule to compute ∂z/∂s and ∂z/∂t for z = x2y2, x = st, y = t2 − s2.

54. (i) Let x = x(u, v), y = y(u, v) be the following set of functions of u, v:

x = u2 − v2, y = 2uv.

If g(u, v) = f(x(u, v), y(u, v)) then compute gu(1, 0), gu(1, 1), gv(1, 0), and gv(1, 1), if you are given
these values of the partial derivatives of f :

x y fx(x, y) fy(x, y)

0 0 A B
1 0 C D
0 1 E F
1 1 G H
2 0 I J
0 2 K L
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(ii) Repeat the above problem if x and y are given by x = u, y = v/u.

(iii) Repeat the problem (i) if x and y are given by x = u+ v, y = u− v.

55. Let x, y,X, Y, TA, and TB be as in the example in §7.2. In that section we computed ∂TB
∂X

.

(i) Compute ∂TB
∂Y

.

(ii) Show that `∂TA
∂x

´2
+
`∂TA
∂y

´2
=
`∂TB
∂X

´2
+
`∂TB
∂Y

´2
.

In other words, A and B may measure different partial derivatives, but the temperature gradients they

find have the same length. ‖ ~∇TA‖ = ‖ ~∇TB‖.

56. For some function f we are told that at the point with Cartesian coordinates (2, 1) one has

∂f

∂r
= 3,

∂f

∂θ
= 6.

Compute the gradient ~∇f at (2, 1).

57. (About polar coordinates). Very often a function is much easier to describe in polar coordinates
(r, θ) than in Cartesian coordinates (x, y). If you are given a function in Polar coordinates and you
want to know its gradient, then the chain rule gives you the answer.

(i) Show that Polar and Cartesian coordinates are related by

r =
p
x2 + y2 and θ = arctan

y

x
,

at least in the region where x > 0.

(ii) Compute ∂r
∂x

, ∂r
∂y

, ∂θ
∂x

, ∂θ
∂y

. Try to simplify your answer as much as possible, by reusing the variables

r and θ. For instance, the simplest way to write ∂r
∂x

is as ∂r
∂x

= x
r

.

(iii) Suppose a quantity P is given in terms of Polar coordinates by P = f(r, θ). Express ∂P
∂x

and ∂P
∂y

in terms of ∂f
∂r

and ∂f
∂θ

.

(iv) Show that

‖ ~∇P‖2 =
`∂f
∂r

´2
+

1

r2

`∂f
∂θ

´2
.

58. In physics an electric field is described by its potential function, φ = φ(x, y) (in this problem we
assume the world is two-dimensional; the potential φ is measured in Volts). Minus the gradient of the
potential function is called the electric field:

~E = − ~∇φ.

The electric potential of a point charge in the plane is given in Polar coordinates by φ = −C ln r, for
some constant C (the physicists will tell you that C depends on the charge that was placed at the
origin; for us it is just some number, and we will in fact assume that C = 1.)

(i) Compute the electric field ~E corresponding to the potential φ = − ln r.

(ii) Compute ‖~E‖ (this quantity measures the strength of the electric field, but not its direction.)
Where is the electric field stronger?

(iii) Make a drawing of the level curves of the potential φ, and the electric field ~E.

(iv) In the three dimensional world the electric potential generated by a charged particle at the origin
is not given by −C ln r, but instead by the so-called Coulomb potential

φ =
C

r
, where r =

p
x2 + y2 + z2.

Compute the corresponding electric field ~E = − ~∇φ.

59. The ideal gas law , given by PV = nRT , relates the Pressure, Volume, and Temperature of n
moles of gas. (R is the ideal gas constant). Thus, we can view pressure, volume, and temperature as
variables, each one dependent on the other two.
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Each of the following three questions can be answered by applying the chain rule to differentiate
z(t) = f(x(t), y(t)) for suitable quantities x, y, and z. In each case state which variables play the role
of x, y, z, and what the function f is.

(i) If pressure of a gas is increasing at a rate of 0.2Pa/min and temperature is increasing at a rate of
1K/min, how fast is the volume changing?

(ii) If the volume of a gas is decreasing at a rate of 0.3L/min and temperatuere is increasing at a rate
of .5K/min, how fast is the pressure changing?

(iii) If the pressure of a gas is decreasing at a rate of 0.4Pa/min and the volume is increasing at a rate
of 3L/min, how fast is the temperature changing?

60. Verify the following identity in the case of the ideal gas law:

∂P

∂V

∂V

∂T

∂T

∂P
= −1

61. The previous exercise was a special case of the following fact, which you are to verify here:

Assume that F (x, y, z) is a function of 3 variables, and suppose that the relation F (x, y, z) = 0

defines each of the variables in terms of the other two, namely x = f(y, z), y = g(x, z) and z = h(x, y),
then

∂x

∂y

∂y

∂z

∂z

∂x
= −1.

Hint: this is a problem about implicit differentiation.

62. Four cartographers are using different coordinates to describe the same landscape. Each of them
describes the landscape by specifying a the height of a point in the landscape as a function of its
position above a horizontal plane.

Cartographer A uses Cartesian coordinates (x, y) in the plane, B uses Cartesian coordinates (X,Y )
in the plane. The coordinates (X,Y ) are rotated by 45◦ with respect to (x, y) (see §7.2).

Cartographer C works with A but uses polar coordinates (r, θ) (r is the distance to the origin, θ
is the angle with A’s x-axis).

Cartographer D works with B and uses polar coordinates (r, ϕ) (r is the distance to the origin, ϕ
is the angle with B’s X-axis).

Here is a (familiar) picture of the landscape that A, B, C, and D are looking at:

(i) If B has found that the height is given by the function f(X,Y ) = 2XY/(X2 + Y 2), then what
function does A find for the height?

(ii) What height function does C find?

(iii) What height function does D find?

63. Brian and Ally are using different Cartesian coordinate systems in the plane: (x, y) for Ally, (X,Y )

for Brian. They have the same origin, but Brian’s coordinates are rotated by an angle of θ = arctan 4
3

(≈ 53◦, but that’s only an approximation. You can give exact answers in this problem, and you don’t
need a calculator.)

(i) What is the relation between (x, y) and (X,Y )?

(ii) If Ally has found that TA(x, y) = 32+0.1y, then what formula TB(X,Y ) will Brian use to describe
the temperature?

(iii) On a different occasion Ally found that the temperature had changed. Now Ally measures the

temperature and finds that at the point with x = 1, y = 1 one has TA(1, 1) = 35, and also ∂TA
∂x

= 0.05
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and ∂TA
∂y

= 0.8. Which coordinates does Brian assign to this point, which temperature TB , and which

derivatives ∂TB
∂X

and ∂TB
∂Y

does Brian compute at this point?

[Hint: before you compute anything, find sin θ and cos θ; also draw a right triangle one of whose

acute angles is θ.]

8. Higher Partials and Clairaut’s Theorem

8.1. Higher partial derivatives. By definition

(38)
∂2f

∂x2
=
∂
`∂f
∂x

´
∂x

,
∂2f

∂x∂y
=

∂
`∂f
∂y

´
∂x

,
∂2f

∂y∂x
=
∂
`∂f
∂x

´
∂y

,
∂2f

∂y2
=

∂
`∂f
∂y

´
∂y

In subscript notation one writes these higher partial derivatives as follows:

fxx(x, y) =
∂2f

∂x2
, fxy(x, y) =

∂2f

∂y∂x
, fyx(x, y) =

∂2f

∂x∂y
, fyy(x, y) =

∂2f

∂y2
.

Note the reversal in x/y order in the mixed partial derivatives!

8.2. Example. If f(x, y) = x2y + cosxy then fx = 2xy − y sinxy, and hence

fxx =
∂(2xy − y sinxy)

∂x
= 2y − y2 cosxy,

fxy =
∂(2xy − y sinxy)

∂y
= 2x− sinxy − xy cosxy.

The other partial derivatives follow from fy = x2 − x sinxy, and they are

fyx = 2x− sinxy − xy cosxy, fyy = −x2 cosxy.

Every time you take a derivative, you can choose whether you differentiate with respect
to x or y. Differentiating once you have two possibilities, differentiating twice you have
2×2 = 4 possibilities, etc. That’s why we found four partial derivatives of second order in
the above example. But if you look carefully, you also see that fxy and fyx are the same.
This is no coincidence.

8.3. Clairaut’s Theorem – mixed partials are equal. If for a given function f
of two variables the mixed partial derivative fxy(x, y) exists for all (x, y) in a neighborhood
of a point (a, b), and if this derivative is continuous at (a, b), then the other mixed partial
derivative fyx(a, b) also exists, and fxy(a, b) = fyx(a, b).

So we normally don’t have to worry about the order in which we take partial deriva-
tives.

8.4. Proof of Clairaut’s theorem. With some algebra you can show that the
definition of partial derivatives imply

(39)
∂2f

∂x∂y
= lim

∆x→0
lim

∆y→0

f(x+ ∆x, y + ∆y)− f(x, y + ∆y)− f(x+ ∆x, y) + f(x, y)

∆x∆y

while

(40)
∂2f

∂y∂x
= lim

∆y→0
lim

∆x→0

f(x+ ∆x, y + ∆y)− f(x, y + ∆y)− f(x+ ∆x, y) + f(x, y)

∆x∆y

So it’s a matter of showing that one can switch the two limits. We won’t go into the
details here, but the hypothesis that fxy is continuous implies that you are indeed allowed
to switch the limits.
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8.5. Finding a function from its derivatives. We now look at integrating the
partial derivatives of a function, which looks out of place here (this being a chapter on
derivatives and not on integrals), but Clairaut’s Theorem actually turns out to play a role.

If you have the derivative f ′(x) of some function of one variable then you know how
to recover the function f(x): you integrate, i.e.

f(x) =

Z
f ′(x)dx+ C.

Furthermore, any (continuous) function can be the derivative of a function, because, if
someone gives you a continuous function f(x), then

F (x)
def
=

Z x

a

f(t)dt

is a differentiable function whose derivative is F ′(x) = f(x).

What about functions of more than one variable? Suppose you know the partial
derivatives

(41)
∂f

∂x
= P (x, y) and

∂f

∂y
= Q(x, y)

of a function of two variables, can you then find the function f(x, y)?

The answer is “yes you can find f by integrating, but not every pair of functions P
and Q can be ∂f

∂x
and ∂f

∂y
.”

The following two examples are typical of what can happen.

8.6. Example. Does there exist a function f(x, y) of two variables such that

∂f

∂x
= x3 − 2xy, and

∂f

∂y
= 3y2

both hold? The answer is no, such a function cannot exist, and here is the reason: if there
were such a function, then we could compute

∂2f

∂y∂x
=
∂(x3 − 2xy)

∂y
= −2x, and

∂2f

∂x∂y
=
∂(3y2)

∂x
= 0.

By Clairaut’s Theorem both computations should give us the same answer, but they don’t.
Therefore the function f whose partials are as above can’t exist.

8.7. Example. Does there exist a function f(x, y) of two variables whose derivatives
are

∂f

∂x
= x3 − 2xy, and

∂f

∂y
= sinπy − x2?

Let’s check Clairaut’s condition:

∂2f

∂y∂x
=
∂(x3 − 2xy)

∂y
= −2x, and

∂2f

∂x∂y
=
∂(sinπy − x2)

∂x
= −2x.

This time both computations gave us the same answer, and the specified partials deriva-
tives are well-defined and continuous for all (x, y), so there is a function f with these
partial derivatives. To compute it we first integrate fx while treating y as a constant:

f(x, y) =

Z
{x3 − 2xy} dx = 1

4
x4 − x2y + C(y).

The “constant” is only a constant in that it does not depend on x. It may depend on y,
and that is why we wrote it as C(y). To find C(y) we differentiate this result with respect
to y:

sinπy − x2 = fy =
∂( 1

4
x4 − x2y + C(y)i)

∂y
= −x2 + C′(y).
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So we see that C′(y) = sinπy, and hence C(y) = − 1
π

cosπy + K, where K is a real
constant (K depends neither on x nor on y).

We find that the following function has the prescribed partial derivatives

f(x, y) = 1
4
x4 − x2y − 1

π
cosπy +K

where K can be any constant.

The method used in this example always works, and we summarize this fact in the
following theorem.

8.8. Theorem. Suppose P (x, y) and Q(x, y) are two functions which are defined on
a rectangular domain R = {(x, y) : a < x < b, c < y < d}, and suppose that they have
continuous partial derivatives on this domain.

If a function f(x, y) exists such that (41) holds on R, then

(42)
∂P

∂y
=
∂Q

∂x

must hold on R.

Conversely, if P and Q satisfy (42) then there is a function f defined on R which
satisfies (41).

To prove this theorem we need to understand integrals of functions of several variables,
and Green’s theorem in particular, so this will have to wait until the end of the semester.

It should be noted that the assumption above that the functions P and Q be defined
on a rectangle is important: the theorem is no longer true if the domain of P and Q “has
holes.” See problem 79.

9. Problems

64. Find all first and second partial derivatives of x3y2 + y5.

65. Find all first and second partial derivatives of 4x3 + xy2 + 10.

66. Find all first and second partial derivatives of x sin y.

67. Find all first and second partial derivatives of sin(3x) cos(2y).

68. Find all first and second partial derivatives of ex+y2 .

69. Find all first and second partial derivatives of ln
p
x3 + y4.

70. Find all first and second partial derivatives of z with respect to x and y if x2 +4y2 +16z2−64 = 0.
(Hint: solve for z or use implicit differentiation. . . )

71. Find all first and second partial derivatives of z with respect to x and y if xy+ yz+xz = 1. (Hint:
solve for z or use implicit differentiation. . . )

72. How many different second partial derivatives does a function of two variables have? What about
a function of three variables? How many derivatives of third degree does a function of two variables
have?

73. Derive the formulas (39) and (40) from the definition of partial derivatives (4) and (5).

74. The equation which describes the vibrating string (as in a guitar, piano, or violin string) is

(43)
∂2f

∂t2
= c2

∂2f

∂x2

where c > 0 is some constant. The equation is called the wave equation. It is an example of a partial
differential equation.
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Warning : this problem looks like a problem about differential equations, but to answer the
following questions you really only have to compute partial derivatives of certain functions, and solve
some (easy) algebraic equations.

(i) For which values of the constant v is a “traveling wave with velocity v and profile F (x)” a solution
of the wave equation (43)? Does it matter which profile F is used here?

(For the terminology used here, revisit problem 11.)

(ii) Suppose the string is clamped down at its ends, and that its length is L. For which values of the
constants A and α is

f(x, t) = A sin(αt) sin
πx

L
a solution of the wave equation? (Assume A 6= 0).

(iii) Same question for

g(x, t) = B sin(βt) sin
2πx

L
.

(iv) Show that h(x, t) = f(x, t) + g(x, t) is again a solution of the wave equation, where f and g are
as above. (Don’t use the formulas for f and g: it is easier to prove a more general fact, namely, if two
functions f and g satisfy (43), the so does their sum f + g.)

(v) Use a graphing application (grapher.app on Mac OS X, graphcalc.exe on Windows XP/Vista
or Linux) to visualize the solutions f , g, and h above. (Don’t have a computer? You should be able
to describe f and g in words and drawings of some “stills”; h is more challenging.)

75. Suppose P (x, y) = x2 − 2xy3 and Q(x, y) = (xy)2. Does there exist a function f(x, y) such that
P = fx and Q = fy?

76. Suppose P (x, y) = x2 + axy3 and Q(x, y) = (xy)2, where a is a constant. For which a does there
exist a function f(x, y) such that P = fx and Q = fy?

77. Suppose P (x, y) = x2 − 2xy3 and Q(x, y) = (xy)2. Does there exist a function f(x, y) such that
P = fx and Q = fy?

78. Suppose x = u+ v, y = u− v, and suppose f(x, y) = g(u, v). Then compute

(i)
∂2g

∂u2
(ii)

∂2g

∂v2
(iii)

∂2g

∂u2
−
∂2g

∂v2
(iv)

∂2g

∂u2
+
∂2g

∂v2

79. [For discussion] Let

P (x, y) =
−y

x2 + y2
, Q(x, y) =

x

x2 + y2
.

(i) What is the domain of P and Q?

(ii) Show that

P =
∂θ

∂x
, Q =

∂θ

∂y
where θ is the angle variable from polar coordinates.

(iii) What is the domain of θ? (Careful, we want θ to be a differentiable function on the domain you
specify.)

(iv) Show that P and Q satisfy the condition (42). (You don’t have to compute the derivatives to
check this, although you could.)

(v) Is there a function f such that (41) holds?



CHAPTER 3

Maxima and Minima

In first semester calculus you learned how to find the maximal and minimal values
of a function y = f(x) of one variable. The basic method was as follows: assuming
the independent variable was restricted to some interval a ≤ x ≤ b, you first look for
interior maxima/minima. These occur at critical or stationary points of the function,
i.e. solutions x of f ′(x) = 0. You then check the function values at the endpoints a and b
of the interval, to see if they might be maxima or minima.

To see which solutions of f ′(x) = 0 are actually local maxima or minima you can look
at the sign of the derivative f ′(x) to see where the function is increasing or decreasing, or
you can apply the second derivative test.

This chapter we will see how to solve similar questions about functions of two or more
variables.

1. Local and Global extrema

Let z = f(x, y) be the function whose maximal or minimal values we are looking
for, and let D be the domain of this function. This domain could be the largest possible
domain for the given function (in case f is defined by a formula), but it could also be
some smaller region which we ourselves have chosen. The question we are considering is

What are the largest and smallest values that f(x, y) can have
if the point (x, y) belong to the domain D?

1.1. Definition of global extrema. The function f has a global maximum or
absolute maximum at a point (a, b) in D if f(x, y) ≤ f(a, b) for all points (x, y) in D.

Similarly, the function f has a global minimum or absolute minimum at a point
(a, b) in D if f(x, y) ≥ f(a, b) for all points (x, y) in D.

1.2. Definition of local extrema. The function f has a local maximum at a
point (a, b) in D if there is a r > 0 such that f(x, y) ≤ f(a, b) for all points (x, y) in D
which also lie in a disc of radius r centered at (a, b).

Local minima are defined analogously.

1.3. Interior extrema. Recall that a point (a, b) in a domain D is called interior
if it is not a boundary point, or, more precisely, if there is some small r > 0 such that
the disc with radius r centered at (a, b) is entirely contained in D. We will apply this
distinction to the local and global maxima and minima which we find: an interior local
minimum is a local minimum which occurs at an interior point of the domain D of the
function.

43
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Figure 1: The graph of f(x, y) = x2 + y2 from example § 2.2 on three different rectangles. From left
to right: (i) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Both max and min are attained at a corner point of the rectangle.
(ii) 0 ≤ x ≤ 1,−1 ≤ y ≤ 1, Two maxima, both are attained at corner points of the rectangle; the
minimum is attained at an edge point. (iii) −1 ≤ x ≤ 1,−1 ≤ y ≤ 1, Four maxima, all attained at
corner points of the rectangle; the minimum is attained at an interior point.

2. Continuous functions on closed and bounded sets

Before we go into the details of how you can actually find the maxima and minima,
it is good to know the following general fact. It tells us where to expect maxima and
minima.

Let z = f(x1, · · · , xn) be a continuous function defined on some closed and bounded
region D in Rn. Remember: “closed” means that D contains all its boundary points, and
“bounded” means that all points in D are not further away from the origin than some
fixed radius R (D does not “stretch all the way to infinity”.)

We will also assume that f is continuous on D.

2.1. Theorem about Maxima and Minima of Continuous Functions. A con-
tinuous function defined on a closed and bounded region D ⊂ Rn has both a maximum and
minimum within that region.

This is proved in courses like 522 (2nd semester analysis) or 561 (point set topology).
The proof really doesn’t belong here in math 234.

2.2. Example – The function f(x, y) = x2 + y2. This function is continuous, and
the square Q = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} is bounded, and it contains all boundary
points. Therefore Theorem 2.1 tells us that f attains both its highest and lowest values
somewhere in the square. The theorem does not say where these max/min points are, but
in this example they are easy to find. The function f(x, y) = x2 + y2 is at its smallest
when both x = 0 and y = 0, i.e. at the bottom left corner of the square. And f(x, y) is at
its largest when x = 1 and y = 1 both hold. This happens at the top right corner of the
square.

Note that the boundary of the rectangle Q has two different kinds of points: it has
four corner points, and then all the other points which lie on the edges.

If you change the rectangle Q then the minimum can appear at a corner point, a
point on an edge, or in an interior point. See Figure 1.
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2.3. A fishy example. Consider the function f(x, y) = x2− x3− y2. Its zero set is
the curve y2 = x2−x3, which is shaped like the letter α, or like a fish – see Figure 2. The
function is positive on the tail (D1) and also on the body (D2) of the fish, it vanishes on
the curve which traces out the fish, and f is negative elsewhere.

Theorem 2.1 does not apply to the region D1 because D1 is not bounded (it contains
the whole negative x-axis). But the regionD2 is bounded, and our function f is continuous,
so Theorem 2.1 does apply to D2. The theorem tells us that the function f has a maximal
value and a minimal value in D2. In the interior of D2 the function is strictly positive,
and on the boundary of D2 we have f = 0. Therefore each boundary point is a minimum
point of f on D2. The point(s) in D2 where f attains its highest value must be somewhere
in the interior of D2. In the next section we will see how to find it (and how to check that
in this case there really only is one such point.)

Figure 2: The region where f(x, y) = x2 − x3 − y2 is positive consists of two parts, one bounded
(D2), and the other unbounded (D1). Theorem 2.1 does not apply to the unbounded region, but it
does apply to the bounded region D2. In that region f must attain a maximum and a minimum. Since
f = 0 on the boundary of the region D2, and f > 0 in the interior, f achieves its lowest value in D2

everywhere on the boundary of D2 and its highest value somewhere in the interior. Theorem 2.1 does
not tell you how to find that interior point, and allows for the possibility that there might be more
interior maxima, as well as a few interior local minima.

3. Problems

80. Suppose you want to find the maximal value of f(x, y) = x2−x3− y2 over all possible (x, y) with
x ≥ 0 (and no restriction on y – this region is called the right half plane).

(i) Explain why you should always choose y = 0 in order to maximize this particular function f(x, y).

(ii) Use your answer to part (i) to find the point (x, y) which maximizes f(x, y) over the right half
plane.

(iii) Does our function f(x, y) have a maximal value if (x, y) can be any point in the plane? (hint:
what is f(−1000, 0)?)

81. Draw the region R =
˘

(x, y) : y2 ≤ 4(x3 − x4)
¯

. Find the largest and smallest values which the

function f(x, y) = x can have on this region. (Hint: where is 4(x3 − x4) = 4x3(1− x) positive? The
region looks like an Onion).
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4. Critical points

For functions y = f(x), a ≤ x ≤ b, of one variable the standard way of finding minima
(and maxima) is to look for them in two different places: either the minimum is attained
at one of the end points x = a or x = b of the interval, or else the minimum is attained
at an interior point. At an interior minimum one has f ′(x) = 0, so they can be found by
solving the equation f ′(x) = 0. The same approach works for functions of two or more
variables. The basic fact that tells us this is so, is the following theorem.

4.1. Theorem. Local extrema are critical points. If a function z = f(x, y)
defined on a domain D has a local minimum or local maximum at an interior point (a, b)
then one has

∂f

∂x
(a, b) = 0, and

∂f

∂y
(a, b) = 0.

Picture proof. If f has a local maximum at an interior point (a, b) then f(x, y) ≤
f(a, b) for all (x, y) close to (a, b). This means that a small piece of the graph of f near its
local maximum at (a, b, f(a, b)) lies below the plane z = f(a, b). This plane must therefore
be the tangent plane to the graph of f . Being horizontal, its slopes are zero, and these
slopes are exactly the partial derivatives of f at (a, b). �

Frozen variable proof. Suppose f has a local maximum at an interior point (a, b)
of the domain D. Then we can freeze the y-variable at the value y = b and consider the
function of one variable g(x) = f(x, b). This function has a maximum at x = a, so by first
semester calculus we know that g′(x) = 0. By definition g′(a) = fx(x, b), so we conclude
that fx(a, b) = 0.

By freezing x instead of y you show that fy(a, b) = 0 also must hold.

The same arguments apply to a local minimum. �

fx = 0fy=0

x

y

Figure 3: Theorem 4.1. At a local maximum the tangent plane to the graph is horizontal. The
partial derivatives w.r.t. both x and y vanish, and in fact, the derivative along any path through (a, b)

vanishes. To see a picture of a local minimum turn the page upside down.
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4.2. Three typical critical points. Let’s find the critical points of the following
three functions:

f(x, y) = x2 + y2, g(x, y) = x2 − y2, h(x, y) = −x2 − y2.

I f(x, y) = x2 + y2. Computing the partial derivatives we find for the first function

∂f

∂x
= 2x,

∂f

∂y
= 2y.

If (x, y) is a critical point of f then x and y must satisfy the equations fx(x, y) = 0 and
fy(x, y) = 0, in this case, 2x = 0 and 2y = 0. So we see that f has exactly one critical
point, namely the origin (x, y) = (0, 0).

Is this critical point perhaps a minimum or a maximum? Since squares can never
be negative, f(x, y) = x2 + y2 is always non-negative, and it is at its smallest when both
terms x2 and y2 vanish, i.e. f(x, y) has a global minimum at the origin.

I h(x, y) = −x2−y2. This function is just −f(x, y), and without looking at its derivatives
you can tell that it has a global maximum at the origin. If you differentiate it you find

∂h

∂x
= −2x,

∂h

∂y
= −2y

so that the origin is the only critical point of this function too.

I g(x, y) = x2 − y2. The derivatives of g are

∂g

∂x
= 2x,

∂g

∂y
= −2y,

so, once again, the origin is the only critical point. But, unlike the previous two functions,
g has neither a maximum nor a minimum at the origin. You can see this by first looking
at what g does on the x-axis, and then what g does on the y-axis:

On the x-axis you have g(x, 0) = +x2, so g has a minimum at the origin.

On the y-axis you have g(0, y) = −y2, so g has a maximum at the origin.

So arbitrarily close to the origin you can find points (x, y) where g(x, y) is larger than
g(0, 0), and you can find other points where g(x, y) is smaller than g(0, 0). Therefore g
does not have a local maximum or a local minimum at the origin. See Figure 4.

local max local minsaddle point

Figure 4: The three most common kinds of critical point. See the examples in §4.2 and also the
second derivative test in §9.

4.3. Critical points in the fishy example. What are the critical points of the
function f(x, y) = x2 − x3 − y2 from §2.3? We compute the partial derivatives of the
function

∂f

∂x
= 2x− 3x2 = (2− 3x)x,

∂f

∂y
= −2y.

The equation fy = 0 implies that y = 0, while fx = 0 implies x = 0 or x = 2
3
. Therefore

f has two critical points: one at the origin (0, 0), and the other at ( 2
3
, 0).
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In this example we could have already predicted from the
shape of the zero set of f that f has at least two critical points –
we don’t need to compute the derivatives of f for that. Namely,
the zero set of f is a curve which crosses itself at the origin, so
the Implicit Function Theorem 6.1 (chapter 2) can’t hold at the
origin, and hence fx = fy = 0 there. And in § 2.3 we argued
that the function f must have a local maximum in the region D2

(Figure 2), so f must have at least two critical points. On the
other hand, by computing the critical points we have found that there is only one local
maximum in the region D2.

4.4. Another example: Find the critical points of f(x, y) = x − x3 − xy2.
Solution: The derivatives of our function are

∂f

∂x
= 1− 3x2 − y2,

∂f

∂y
= −2xy.

The critical points are therefore the solutions of the equations

1− 3x2 − y2 = 0, −2xy = 0.

This is a system of two equations, with two unknowns (that always happens when you
look for critical points, since you’re looking for solutions of fx(x, y) = 0, fy(x, y) = 0.)
The second equation, −2xy = 0, implies that either x = 0 or y = 0 (or both). We have to
treat these two cases separately:

The case x = 0. If x = 0 then we only have the first equation left,
which tells us 1− y2 = 0, i.e. y = ±1. We find two critical points with
x = 0, namely, (0, 1) and (0,−1).

The other case, x 6= 0. If x 6= 0, then the second equation (−2xy =
0) implies y = 0. Substitute this in the first equation and you find

1 − 3x2 = 0, i.e. x = ± 1
3

√
3, so that we have two critical points with

x 6= 0, namely, (− 1
3

√
3, 0) and ( 1

3

√
3, 0).

The conclusion is that this function has four critical
points, two on the x-axis, and two on the y-axis.
Without looking into this in any further detail we
don’t know if any of these points are local maxima
or minima. In general the second derivative test (to
be explained in § 9) will provide this information. For
this example a look at the zero set of f also helps us
figure out what kind of critical points we have found.
Since f factors as f(x, y) = x(1 − x2 − y2), you see
that its zero set consists of the line x = 0 (a.k.a. the
y-axis), and the unit circle x2 + y2 = 1. In the above

picture f > 0 in the grey region, and f < 0 in the white area. Consider the right half of
the unit disc. The function is positive in the interior, and zero on the boundary of this
region. Just as in the “fishy example” of § 2.3, we have another case where the maximum
of the function must be attained at one or more interior points of the right half of the
unit disc. According to our computation f only has one critical point in the right half
circle, and therefore this point must be a local maximum of the function. Conclusion:
D = ( 1

3

√
3, 0) is a local maximum.

In the same spirit you can argue that f has a local minimum at C.

The other two points A,B are neither local maxima nor minima, since arbitrarily
close to A or B there are both points (x, y) with f(x, y) positive, and points with f(x, y)
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negative. The points A and B turn out to be “saddle points” (see §9 on the second
derivative test.)

5. When you have more than two variables

The whole discussion so far has been about functions of two variables. Fortunately,
not much changes when you have more variables. The concepts local minimum and local
maximum are defined in the same way, and it turns out that any interior local maximum
or minimum must be a critical point of the function. Here, by definition, a critical point
of a function w = f(x1, . . . , xn) of n variables is a solution of the equations

∂f

∂x1
(x1, · · · , xn) = 0

...

∂f

∂xn
(x1, · · · , xn) = 0.

Note that there are n equations, and there are also n unknowns (x1, . . . , xn) so that you
should in principle be able to solve these equations. In practice the system of equations
you get can be very easy, or simply impossible to solve.

6. Problems

82. Find all critical points of the following functions. Try to classify them into local/global max-
ima/minima, saddles, or other kind of critical points. (Write clear solutions. You will need your
solutions later in problem 96.)

(i) f(x, y) = x2 + 4y2 − 2x+ 8y − 1 (ii) f(x, y) = x2 − y2 + 6x− 10y + 2

(iii) f(x, y) = x2 + 4xy + y2 − 6y + 1 (iv) f(x, y) = x2 − xy + 2y2 − 5x+ 6y − 9
(v) f(x, y) = y2 − 18x2 + x4 (vi) f(x, y) = y4 − 4y2 − 18x2 + x4

(vii) f(x, y) = 9 + 4x− y − 2x2 − 3y2 (viii) f(x, y) = xy(4− x− 2y)

(ix) f(x, y) = (x− y2)(x− 1) (x) f(x, y) = (x− y)(xy − 4)

(xi) f(x, y) = y2 + cosx (xii) f(x, y) = x2y − 1
3
y3

(xiii) f(x, y) = (x− y2)(x− 1) (xiv) f(x, y) = (x− y)(xy − 4)

(xv) f(x, y) = x2 (xvi) f(x, y) = x2y

(xvii) f(x, y) =
`
1− x2 − y2

´2
(xviii) f(x, y) = x2y

83. (i) Draw the zero set of the function f(x, y) = sin(x) sin(y).

(ii) Where is the function f positive? Find as many critical points as you can without computing fx
or fy .

(iii) Find all critical points of f(x, y). Which are local minima or local maxima?

84. Find the critical points of the function

f(x, y, z) = x2 + y2 + z2 − 2x+ 4y − 2.

85. Draw the zero set and find the critical points of the functions

f(x, y, z) = x2 + y2 − z2 and g(x, y, z) = x2 − y2 − z2

86. Given the three points (1, 4), (5, 2), and (3,−2),

f(x, y, z) = (x− 1)2 + (y − 4)2 + (x− 5)2 + (y − 2)2 + (x− 3)2 + (y + 2)2

is the sum of the squares of the distances from point (x, y) to the three points. Find x and y so that
this quantity is minimized.

87. Given the three points (a, b), (c, d), and (e, f), let f(x, y, z) be the sum of the squares of the
distances from point (x, y) to the three points. Find x and y so that this quantity is minimized.
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88. Suppose a function f(x, y) factors, i.e. you can write it as the product of two other differentiable
functions, f(x, y) = g(x, y)h(x, y). Prove: if a point (a, b) lies in the zero set of g and also in the
zero set of h, then (a, b) is a critical point of f .

89. Find the critical points of the functions

(i) f(x, y, z) = x2 + y2 + z2 − 2x+ 4y − 2 (ii) f(x, y, z) = x4 + y2 + z2 − 2xz + 4y

(iii) f(x, y, z) = xyze−x−y−z (iv) f(x, y, z) = x2 + y2 + z2 − 2xyz

7. A Minimization Problem: Linear Regression

Suppose you are measuring two quantities x and y in some experiment, and suppose
that you expect that there is a linear relation of the form y = ax+ b between x and y. If
you have a set of data points (xk, yk) from your experiment, then what do they tell you
about a and b? Which choice of coefficients a and b bests fits your data? Because
of experimental errors you would not expect your data points to lie on a straight line, but
instead, you expect them to be clustered around a straight line. You could plot the data
points, get a ruler, and draw a straight line by hand that looks like the best match – then
you could measure a, b from your drawing. A more systematic approach is to first define
what you mean by “best match” and then find the line that best matches according to
your chosen criterion.

A very common criterion is the least-mean-square-fit. To describe it, imagine you
have N data points, (x1, y1), . . . (xN , yN ), and consider the line with coefficients a and b.
Most data points (xk, yk) will then probably not lie on the line y = ax+ b, and one uses

Ek = 1
2

`
axk + b− yk

´2
as a measure for the mismatch between the data point (xk, yk) and the line y = ax+b (the
factor 1

2
makes formulas later on nicer). Adding all these errors we get the total “mean

square” error

E = E1 + · · ·+ EN .

If we think of all the numbers x1, . . . , xN , y1, . . . , yN as given constants (after all, you
measured them, so you shouldn’t change them any more), then the total error only depends
on the coefficients a and b. It is a measure for how well the line y = ax+ b fits our data
points, and the common method of linear regression consists in choosing the coefficients
a and b so as to minimize this error E.

y = ax+ b

(xk, yk)

˛̨
axk + b− yk

˛̨

Figure 5: Which line best fits a set of data points?
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This leads us to the problem of finding the critical points of the total error E as a
function of a and b. We have to solve

∂E

∂a
= 0

∂E

∂b
= 0.

The total error is the sum of the individual errors Ek(a, b) so we get

∂E

∂a
=
∂E1

∂a
+ · · ·+ ∂EN

∂a
,

∂E

∂b
=
∂E1

∂b
+ · · ·+ ∂EN

∂b
.

The individual errors have the following derivatives:

∂Ek
∂a

= xk
`
axk + b− yk

´
,

∂Ek
∂b

= axk + b− yk.

Adding all these derivatives then leads to

∂E

∂a
=
X

xk
`
axk + b− yk

´
= (
P
x2
k)a+ (

P
xk)b−

P
xkyk

and

∂E

∂b
=
X˘

axk + b− yk
¯

= (
P
xk)a+Nb−

P
yk

Here “
P

” represents summation over k = 1, · · · , N , i.e.
P
xkyk = x1y1 + · · ·+xNyN , etc.

If (a, b) is a critical point then a and b must satisfy

(
P
x2
k)a+ (

P
xk)b =

P
xkyk

(
P
xk)a+Nb =

P
yk

These are two linear equations for the two unknowns a and b. Solving them leads to

a =
N
P
xkyk −

P
xk
P
yx

N
P
x2
k −

`P
xk
´2 ; b =

−
P
xk
P
xkyk +

P
x2
k

P
yk

N
P
x2
k −

`P
xk
´2 .

These are the standard formulas for the coefficients a and b provided by the method of
linear regression. Most calculators, and certainly all spreadsheets (like Excel) have these
formulas preprogrammed, so you only have to enter the data points (xk, yk) and “push
the right button” to get a and b.

8. Problems

90. You are given N measurements x1, . . . , xN from some experiment, and, inspired by the Linear
Regression example, you decide to see which number a “best fits the data.” You define the error (or
“measure of misfit”) for each measurement to be

Ek(a) = 1
2

(a− xk)2

and you look for the number a which minimizes the total error

E(a) = E1(a) + · · ·+ EN (a).

(i) Is this a problem about several variable calculus, or about one variable calculus?

(ii) Which number a do you find?

91. You have a series of data points (xk, yk), and when you plot them you think you see a convex
curve rather than a straight line. In fact it looks like a parabola to you, and so you set out to find a
quadratic function y = ax2 + bx+ c which minimizes the error

E(a, b, c) = E1 + · · ·+ EN , with Ek(a, b, c) = 1
2

`
ax2
k + bxk + c− yk

´2
.

(i) How many variables are there in this problem?

(ii) If (a, b, c) is a critical point of E(a, b, c) then a, b, and c satisfy three linear equations. Find these
equations (don’t solve them).
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92. A measurement in a certain experiment results in three numbers (x, y, z). The point of the exper-
iment is to see if there is a linear relation of the form z = ax + by + c between the three measured
quantities, and to estimate the coefficients a, b, c.

After repeating the experiment N times you have N data points (xk, yk, zk) (k = 1, . . . , N).
You decide to choose a, b, c so as to minimize the mean square error

E = E1 + · · ·+ EN , with Ek(a, b, c) = 1
2

`
axk + byk + c− zk

´2
.

Which (linear) equations do you get for a, b, and c?

9. The Second Derivative Test

9.1. The one-variable second derivative test. For a function y = f(x) of one
variable you can tell if a critical point a is a local maximum or minimum by looking at
the sign of the second derivative f ′′(a) of the function at that point. If f ′′(a) > 0 then
the graph of f is curved upwards and f has a local minimum at a, if f ′′(a) < 0 then f
has a local max. This section is about the analogous test for critical points of functions
of two variables.

a b

f"(a)>0 f"(b)<0

One way to understand the second derivative test is to look at the Taylor expansion
of the function y = f(x). If x = a is a critical point for f , then

f(a+ ∆x) = f(a) + f ′(a)∆x+ 1
2
f ′′(a)(∆x)2 + · · ·

Since a is a critical point of f we have f ′(a) = 0, so that the Taylor expansion reduces to

(44) f(a+ ∆x) = f(a) + 1
2
f ′′(a)(∆x)2 + · · ·

If we ignore the remainder term (the dots), then we find that

f(a+ ∆x) ≈ f(a) + 1
2
f ′′(a)(∆x)2.

Near the critical point the graph of y = f(x) is a approximately a parabola. It is curved
upwards if f ′′(a) > 0, and downwards if f ′′(a) < 0.

To apply the same reasoning to a function of two (or more) variables we need to know
the Taylor expansion of such a function.

9.2. Taylor’s formula for a function of several variables. The Taylor expansion
of a function z = f(x, y) should give us an approximation of f(a + ∆x, b + ∆y) in terms
involving powers of ∆x and ∆y. There is a general formula, but here we only need the
second order terms, so we’ll derive those and stop there.

The trick to finding the Taylor expansion is to consider the function

(45) g(t) = f(a+ t∆x, b+ t∆y).

By definition

g(1) = f(a+ ∆x, b+ ∆y)

is the quantity we want to approximate, and g(0) = f(a, b). Since g(t) is a function of one
variable, we can apply Taylor’s formula from math 222 to it. You get:

(46) g(t) = g(0) + g′(0)t+ g′′(0)
t2

2!
+ · · ·
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The dots contain the remainder term, which we will ignore in this course. Now we set
t = 1, and we get

g(1) = g(0) + g′(0) +
1

2
g′′(0) + · · ·

The derivatives of g can be computed with the chain rule:

g′(t) =
df(a+ t∆x, b+ t∆y)

dt
(47)

= fx(a+ t∆x, b+ t∆y)
d(a+ t∆x)

dt
+ f(a+ t∆x, b+ t∆y)

d(b+ t∆y)

dt
= fx(a+ t∆x, b+ t∆y)∆x+ fy(a+ t∆x, b+ t∆y)∆y.

The second derivative is

(48) g′′(t) = fxx(a+ t∆x, b+ t∆y)(∆x)2

+ 2fxy(a+ t∆x, b+ t∆y)∆x∆y

+ fyy(a+ t∆x, b+ t∆y)(∆y)2.

In computing g′′(t) you run into terms involving fxy and terms with fyx. Because of
Clairaut’s theorem these are the same, and combining them leads to the coefficient “2” in
front of fxy above.

Setting t = 0 in (47) and in (48) gives you expressions for g′(0) and g′′(0), and by
substituting these in (46) you get the second order Taylor expansion of a function
of two variables:

(49) f(a+ ∆x, b+ ∆y) = f(a, b) + fx(a, b)∆x+ fy(a, b)∆y

+
1

2

n
fxx(a, b)(∆x)2 + 2fxy(a, b)∆x∆y + fyy(a, b)(∆y)2

o
+ · · ·

The first three terms are exactly the linear approximation of the function from Chapter
2, §10. As always, the dots contain the remainder term. By carefully including the one-
variable Lagrange remainder in the derivation you can get a formula for the remainder in
(49). We will not do that, but it can be shown that the remainder is o

`
(∆x)2 + (∆y)2

´
,

i.e. that it is small compared to the other terms in the expansion, at least when ∆x and
∆y are small.

9.3. Example: Compute the Taylor expansion of f(x, y) = sin 2x cos y at the
point ( 1

6
π, 1

6
π). To find the expansion we need to compute f, fx, fy, fxx, fxy, and fyy at

( 1
6
π, 1

6
π). Here goes:

f = sin 2x cos y = 3
4

fx = 2 cos 2x cos y = 1
2

√
3

fy = − sin 2x sin y = − 1
4

√
3

fxx = −4 sin 2x cos y = −3

fxy = −2 cos 2x sin y = − 1
2

fyy = − sin 2x cos y = − 3
4
.

Substituting in the Taylor expansion we get

f
`

1
6
π + ∆x, 1

6
π + ∆y

´
= 3

4
+ 1

2

√
3∆x− 1

4

√
3∆y +

1

2

n
−3(∆x)2 − 2 · 1

2
∆x∆y − 3

4
(∆y)2

o
+ · · ·

= 3
4

+ 1
2

√
3∆x− 1

4

√
3∆y − 3

2
(∆x)2 − 1

2
∆x∆y − 3

8
(∆y)2 + · · ·

Note that the first three terms in the expansion are the linear approximation of the
function:

f
`

1
6
π + ∆x, 1

6
π + ∆y

´
= 3

4
+ 1

2

√
3∆x− 1

4

√
3∆y + · · ·
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9.4. Another example: the Taylor expansion of f(x, y) = x3 +y3−3xy at the
point (1, 1). The function f(x, y) = x3 + y3 − 3xy has the following derivatives at (1, 1)

f = x3 + y3 − 3xy = 1

fx = 3x2 − 3y = 0

fy = 3y2 − 3x = 0

fxx = 6x = 6

fxy = −3 =− 3

fyy = 6y = 6

The first derivatives vanish, so (1, 1) is a critical point of f . The second order Taylor
expansion of f at (1, 1) is

(50) f(1 + ∆x, 1 + ∆y) = 1 + 3(∆x)2 − 3∆x∆y + 3(∆y)2 + · · ·

Quadratic forms

An expression of the type

Q(x, y) = Ax2 +Bxy + Cy2

where A, B, and C are constants, is called
a quadratic form in the variables x and y.
They show up whenever you compute sec-
ond order Taylor expansions of a function
of two variables. In this context you want
to know for which (x, y) the form Q(x, y)

is positive or negative. Since

Q(x, y) = y2
˘
A(x

y
)2 +B x

y
+ C

¯
= y2(At2 +Bt+ C)

the question of when Q(x, y) is positive or
negative is closely related to the question of
when the quadratic function At2 +Bt+C
is positive or negative. There is a famil-
iar method for distinguishing between these
cases.

Completing the square. For instance,
if the form is Q(x, y) = −3x2 + 9xy + 6y2

then you rewrite this as follows:

Q = −3x2 + 6xy + 9y2

= −3
`
x2 − 2xy − 3y2

´
= −3

ˆ
x2 − 2xy + y2| {z }

complete square

−4y2
˜

= −3
ˆ
(x− y)2 − 4y2

˜
= −3(x− y − 2y)(x− y + 2y)

= −3(x− 3y)(x+ y).

This shows that Q(x, y) > 0 when y > 1
3
x

or y < −x, and Q(x, y) < 0 when −x <
y < 1

3
x.

Classification of forms. When you apply
this method to a quadratic form you always
end up with one of the following results:

Q is an indefinite form when Q is the prod-
uct of two distinct factors,

Q(x, y) = (ax+ by)(cx+ dy),

as in the example above.
Q is a positive-definite form when Q(x, y)

is the sum of two squares,

Q(x, y) = (ax+ by)2 + cy2 (c > 0)

Q is a negative-definite form when
−Q(x, y) is the sum of two squares,

Q(x, y) = −(ax+ by)2 − cy2 (c > 0)

Q is a degenerate form when Q(x, y) is a
perfect square,

Q(x, y) = (ax+ by)2.

�

Figure 6: Finding the signs of a quadratic form
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To see what kind of critical point (1, 1) is, we have to analyze the second order, quadratic,
terms

(51) 3(∆x)2 − 3∆x∆y + 3(∆y)2

This expression is a quadratic form in ∆x and ∆y, and by completing the square (see
Figure 6) you find that

3(∆x)2 − 3∆x∆y + 3(∆y)2 = 3
h`

∆x− 1
2
∆y
´2

+ 3
4
(∆y)2

i
.

In particular, the quadratic terms in the Taylor expansion of f at the critical point are
always positive, no matter what ∆x and ∆y we choose (as long as they are not both
zero). If we are allowed to ignore the remainder term (the “· · · ”), then this implies that
the function has a local minimum: after all, the Taylor expansion (50) says that for small
∆x and ∆y the function value f(1 + ∆x, 1 + ∆y) is

f(1 + ∆x, 1 + ∆y) ≈ f(1, 1) + 3
`
∆x− 1

2
∆y
´2

+ 9
4
(∆y)2

which is more than f(1, 1).

9.5. Example of a saddle point. The same function f(x, y) = x3 + y3 − 3xy has
another critical point, namely, the origin. By calculating the derivatives at (0, 0) you find
that the Taylor expansion at the origin is

(52) f(∆x,∆y) = −3∆x∆y + · · ·
Ignoring the remainder terms we see that near the origin f(∆x,∆y) ≈ −3∆x∆y, which
suggests that f is positive when ∆x and ∆y are both positive or both negative, while f
is negative when ∆x and ∆y have opposite signs.

Arbitrarily close to the origin the function f therefore has both positive and negative
values, and therefore f has neither a local maximum nor a local minimum at the origin.
In fact the Taylor expansion (52) suggests that the graph of f should look like that of the
“saddle function” z = xy.

9.6. The two-variable second derivative test. The last two examples essentially
show you how the second derivative test for functions of two variables works. To explain
how it works in general, let’s suppose a function f has a critical point at (a, b). Then the
first partial derivatives of f vanish at (a, b) and hence the Taylor expansion simplifies a
bit. You get

(53) f(a+ ∆x, b+ ∆y) = f(a, b)+

1

2

n
fxx(a, b)(∆x)2 + 2fxy(a, b)∆x∆y + fyy(a, b)(∆y)2

o
+ · · ·

This is the two-variable analog of equation (44). To see if (a, b) is a local maximum or
minimum (or neither), we have to see if the quadratic terms in (53) are always negative,
positive, or if they can have any sign, depending on the choice of ∆x, ∆y.

The precise statement of the second derivative test uses the terminology introduced
in Figure 6.

Theorem (second derivative test). If (a, b) is a critical point of f(x, y), and if

Q(∆x,∆y) =
1

2

n
fxx(a, b)(∆x)2 + 2fxy(a, b)∆x∆y + fyy(a, b)(∆y)2

o
is the quadratic part of the Taylor expansion of f at the critical point, then

I If Q is positive definite then (a, b) is a local minimum of f ,
I If Q is negative definite then (a, b) is a local maximum of f ,
I If Q is indefinite then (a, b) is a saddle point of f
I If Q is degenerate the second derivative test is inconclusive.
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When the form Q is indefinite, so that it can be factored as

Q(∆x,∆y) = (k∆x+ l∆y)(m∆x+ n∆y)

then the level set of the function f containing the critical point (a, b) consists of two curves.
One of these curves is tangent to the line

k∆x+ l∆y = 0, i.e. k(x− a) + l(y − b) = 0

while the other is tangent to

m∆x+ n∆y = 0, i.e. m(x− a) + l(y − b) = 0.

9.7. Example: Apply the second derivative test to the fishy example. In
§ 2.3 and § 4.3 we had found that the function f(x, y) = x2−x3−y2 has two critical points,
one at the origin, and one at the point ( 2

3
, 0). By carefully looking at the zero set of the

function we discovered that the origin is neither a local maximum nor a local minimum,
and that the point ( 2

3
, 0) is a local maximum. The second derivative test provides a more

systematic way of reaching these conclusions. To apply the test we need to know the
second derivatives of f at the critical points. They are:

(x, y) fxx(x, y) fxy(x, y) fyy(x, y)

(x, y) 2− 6x 0 −2

(0, 0) 2 0 −2

( 2
3
, 0) −2 0 −2

Therefore the second order Taylor expansion of f at the origin is

f(∆x,∆y) = f(0, 0) + 1
2

˘
2 · (∆x)2 + 2 · 0 ·∆x∆y + (−2)(∆y)2¯+ · · ·

= (∆x)2 − (∆y)2 + · · ·
= (∆x−∆y)(∆x+ ∆y) + · · ·

The quadratic part of the Taylor expansion factors (we have called this “indefinite”). It
can be both positive and negative, depending on your choice of ∆x and ∆y. The second
derivative test implies that the origin is a saddle point. It also says that the zero set of f
near the origin consists of two curves, whose tangents at the origin are given by the two
equations

∆x−∆y = 0 and ∆x+ ∆y = 0.

In this case the point (a, b) is the origin, so ∆x = x− a = x and ∆y = y − b = y, and the
two tangents are the lines y = ±x.

The second origin Taylor expansion at the other critical point ( 2
3
, 0) is given by

f( 2
3

+ ∆x,∆y) = −(∆x)2 − (∆y)2 + · · ·
This time you see that the second order terms of the Taylor expansion are negative definite.
The second derivative test therefore says that we have a local maximum at ( 2

3
, 0).

10. Problems

93. Compute the second order Taylor expansion of the following functions at the indicated points:

(i) f(x, y) =
`
1− x+ xy

´2
at (0, 0) (ii) f(x, y) =

`
1− x+ xy

´2
at (1, 1)

(iii) f(x, y) = ex−y
2

at (0, 0) (iv) f(x, y) = ex−y
2

at (1, 1)

(v) f(x, y) =
x

1− y
at (0, 0) (vi) f(x, y) =

x

1 + y
at (1, 0)

94. Factor, or complete the square in the following quadratic forms, draw their zero sets, and determine
where they are positive definite, negative definite, indefinite or degenerate.
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(i) Q(x, y) = x2 + 3xy + y2 (ii) Q(x, y) = x2 + xy + y2

(iii) Q(x, y) = 2x2 + 3xy − 4y2 (iv) Q(x, y) = 2x2 + 3xy − 5y2

(v) Q(∆x,∆y) = (∆x)2 + (∆y)2 (vi) Q(∆x,∆y) = (∆x)2 − 3(∆y)2

(vii) Q(∆x,∆y) = ∆x∆y (viii) Q(∆x,∆y) = ∆x∆y − 2(∆y)2

95. If a is a constant, then for which values of a is the form Q(x, y) = x2 +2axy+y2 positive/negative
definite, indefinite, or degenerate?

96. Find all critical points of the following functions (you did many of these in problem 82). Apply the
second derivative test to all critical points you find.

(i) f(x, y) = x2 + 4y2 − 2x+ 8y − 1 (ii) f(x, y) = x2 − y2 + 6x− 10y + 2
(iii) f(x, y) = x2 + 4xy + y2 − 6y + 1 (iv) f(x, y) = x2 − xy + 2y2 − 5x+ 6y − 9

(v) f(x, y) = y2 − 18x2 + x4 (vi) f(x, y) = y4 − 4y2 − 18x2 + x4

(vii) f(x, y) = 9 + 4x− y − 2x2 − 3y2 (viii) f(x, y) = xy(4− x− 2y)
(ix) f(x, y) = (x− y2)(x− 1) (x) f(x, y) = (x− y)(xy − 4)

(xi) f(x, y) = y2 + cosx (xii) f(x, y) = x2y − 1
3
y3

(xiii) f(x, y) = (x− y2)(x− 1) (xiv) f(x, y) = (x− y)(xy − 4)

(xv) f(x, y) = x2 (xvi) f(x, y) = x2 − y4

(xvii) f(x, y) = x2 + y4 (xviii) f(x, y) = x2y

97. (i) Draw the zero set of the function f(x, y) = sin(x) sin(y). (ii) Where is the function f positive?
Find as many critical points as you can without computing fx or fy .

(iii) Find all critical points of f(x, y). Which are local minima or local maxima?

98. Find all critical points of the following functions, and apply the second derivative test to the points
you find.

(i) f(x, y) = x2 + y2 − 1
2
xy2 (ii) f(x, y) = x2 + y2 − x2y2

(iii) f(x, y) = x+ 2y − xy2 (iv) f(x, y) = 8x4 + y4 − xy2

99. Suppose that f(x, y) = x2 + y2 + kxy. Find and classify the critical points, and discuss how they
change when k takes on different values.

100. Consider the function f(x, y) = x3 − 3x2y.

(i) Show that (0, 0) is the only critical point of f .

(ii) Show that the second derivative test is inconclusive for f .

(iii) Draw the zero set of f , and indicate where f >
<

0.

(iv) What kind of critical point is (0, 0)?

11. Second derivative test for more than two variables

The ideas that lead to the second derivative test for functions of two variables also
work if you have a function with more variables. However, in math 234 you won’t be
asked to use the test in any problems involving more than two variables, and this short
section tries to explain why.

11.1. The second order Taylor expansion. If z = f(x1, x2, · · · , xn) is a function
of n variables, then its Taylor expansion of order two at some point (a1, a2, · · · , an) turns
out to be

f(a1 + ∆x1, · · · , an + ∆xn) = f(a1, · · · , an) + fx1∆x1 + · · ·+ fxn∆xn

+ 1
2

n
fx1x1(∆x1)2 + · · ·+ fx1xn∆x1∆xn

+fx2x1∆x2∆x1 + · · ·+ fx2xn∆x2∆xn

...

+fxnx1∆xn∆x1 + · · ·+ fxnxn(∆xn)2
o

+ · · ·
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where the partial derivatives fxi and fxixj are to be evaluated at the point (a1, · · · , an).
The same trick involving the function “g(t)” that was used in §9.2 to derive the two-
variable Taylor expansion works without modification.

If (a1, · · · , an) is a critical point then fx1 = fx2 = · · · = fxn = 0, so the linear terms
are absent, and the function is described by the quadratic terms of the Taylor expansion

f(a1 + ∆x1, · · · , an + ∆xn) =

f(a1, · · · , an) + 1
2

n
fx1x1(∆x1)2 + · · ·+ fx1xn∆x1∆xn

+fx2x1∆x2∆x1 + · · ·+ fx2xn∆x2∆xn

...

+fxnx1∆xn∆x1 + · · ·+ fxnxn(∆xn)2
o

+ · · ·

Just as in the two-variable case you could now try to see if the quadratic terms are positive
definite or negative definite by completing squares. The procedure is however much more
complicated, and best understood in terms of “eigenvalues of matrices”, a subject which
is explained in courses on linear algebra or matrix algebra (math 340 or 320). Therefore,
we will only use the second derivative test for functions of two variables in this course.

12. Optimization with constraints

In many optimization problems you want to find the maximal or minimal value of a
function f(x, y) where (x, y) can be any point satisfying a certain constraint

(54) g(x, y) = C.

Thus the domain D of the function you want to minimize consists of all points (x, y) which
satisfy the equation g(x, y) = C: it is a level set of g.

12.1. Solution by elimination or parametrization. One approach to minimiza-
tion problems with a constraint is to “eliminate one variable.” If you are asked to find
the minimal value that f(x, y) can have if (x, y) must satisfy the constraint g(x, y) = C,
then you first try to solve the constraint equation:

g(x, y) = C ⇐⇒ y = h(x).

Now the only (x, y) that you have to consider are points of the form (x, h(x)), so the
old minimization problem is equivalent to a new problem: find the minimal value of
F (x) = f(x, h(x)), where there are no constraints on x. This new problem is a one
variable problem of the kind we learned to solve in math 221.

12.2. Example. Which rectangle with perimeter 1 has the largest area?

If the sides of the rectangle are x and y, then its area is xy and its perimeter is
2(x + y). Hence the function we want to maximize is f(x, y) = xy and the constraint is
g(x, y) = 2(x+ y) = 1.

Solving the constraint for y tells you that y = 1
2
− x, so we want to maximize the

function F (x) = f(x, 1
2
− x) = x( 1

2
− x). There is no constraint on x. . . well, this is not

quite true: x cannot be negative, and neither can y = 1
2
− x, so we want to maximize

F (x) = x( 1
2
− x) over all x in the interval 0 ≤ x ≤ 1

2
.
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12.3. Example. Maximize x+ 2y over the unit circle.

We are asked to find the maximal value of f(x, y) = x + 2y where (x, y) is allowed
to be any point which satisfies the constraint g(x, y) = x2 + y2 = 1. If we try to solve

for y we find that there are two solutions, y = ±
√

1− x2, and so the “function” F (x) =

x + 2y = x ± 2
√

1− x2 is note really a function at all. In this case we can still solve the
problem by noting that any point on the unit circle can be written as (x, y) = (cos θ, sin θ)
for some angle θ, and thus we have to maximize the function

F (θ) = f(cos θ, sin θ) = cos θ + 2 sin θ.

Here there are no constraints on θ, and we again have a first semester calculus problem.

12.4. Solution by Lagrange multipliers. In both examples above we were lucky
because we could either solve the constraint equation or we could parametrize all possible
points that satisfy the constraint. There is a method due to Joseph-Louis Lagrange (known
from the remainder term) that does not require this kind of luck. His method is based on
the following observation (see Figure 7).

Figure 7: Lagrange multipliers

Let B = (x, y) be a point on the constraint set as in the figure. Assume that ~∇g 6= ~0
at B, then near B the Implicit Function Theorem says that the constraint set g(x, y) = C

is a curve, and that its tangent is perpendicular to ~∇g(B).

If ~∇f(B) is not perpendicular to the constraint set at B, then it provides us a direction
along the constraint set in which f will increase (see Figure 7). Therefore f does not have
a maximum at B. It follows that at a maximum of f on the constraint set g(x, y) = C

the gradient ~∇f(B) must be perpendicular to the constraint set, and hence it must be

parallel to ~∇g(B). Since one vector is parallel to another if it is a multiple of the other
vector, we have found the following fact.

12.5. Theorem (Lagrange multipliers). If the function z = f(x, y) attains its
largest value among all points which satisfy the constraint g(x, y) = C at the point (a, b),
and if

(55) ~∇g(a, b) 6= 0,
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then the point (a, b) satisfies the Lagrange Multiplier equations,

(56) ~∇f(a, b) = λ~∇g(a, b)

The number λ is called the Lagrange multiplier, and it is one of the unknowns in the
equations you must solve when you use Lagrange’s method.

12.6. Example. We again try to find the largest rectangle with perimeter 1, as in
example 12.2.

The problem is to maximize f(x, y) = xy with constraint g(x, y) = 2x+ 2y = 1. We
compute the gradients

~∇f =

„
y
x

«
, ~∇g =

„
2
2

«
,

The gradient of g never vanishes, i.e. ~∇g(x, y) 6= ~0 for all (x, y), so Lagrange tells us that
any minimum or maximum satisfies the following equations

fx = λgx, i.e. y = 2λ(57)

gy = λgy, i.e. x = 2λ(58)

g(x, y) = C, i.e. 2x+ 2y = 1.(59)

The first two equations come from ~∇f = λ~∇g, and the last equation is the constraint. We
have three equations, and we also have three unknowns: x, y and the Lagrange multiplier
λ.

In this case it is easy to solve the equations: the first two say that both y and x equal
2λ, so in particular, they equal each other: y = x. This already tells us that the solution
is a square! To complete the problem we must still solve for x, y, λ. Since x = y the
constraint implies 4x = 1, so x = y = 1

4
. Finally, either of the first two equations provides

λ = 1
2
x = 1

2
y = 1

8
.

What is the meaning of λ? In this example you see that we first found the solution
(x, y), and then computed λ. The multiplier λ is the ratio between the lengths of the
gradients of f and g at the maximum, and is usually of no interest. Nonetheless, when
using Lagrange’s method, you must always also find λ, or at least make sure that a λ
exists for the x and y you have found.

Did we find a maximum or a minimum? Lagrange’s method does not tell us if we
have a maximum or a minimum, and we will have to use different methods to figure this
out. There does exist a second derivative test for constrained minimization problems, but
it falls outside the scope of this course.

12.7. A three variable example. Find the largest value of x+ y+ z on the sphere
with equation x2 + y2 + z2 = 1.

Solution: We must maximize f(x, y, z) = x + y + z with constraint g(x, y, z) =
x2 + y2 + z2 = 1.

Lagrange’s method says that the minimum and maximum either occur at a point

(x0, y0, z0) with ~∇g(x0, y0, z0) = ~0, or else at a point which satisfies Lagrange’s equations.
The gradient of g is

~∇g(x, y, z) =

0@2x
2y
2z

1A ,

and the only point where ~∇g = ~0 is at the origin. The origin does not satisfy the constraint
g(x, y, z) = 1, so we can rule out the possibility of the maximum or minimum occurring

at a point with ~∇g = ~0.
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This leads us to consider the Lagrange multiplier equations, which are

1 = λ · 2x (fx = λgx)

1 = λ · 2y (fy = λgy)

1 = λ · 2z (fz = λgz)

x2 + y2 + z2 = 1 (g(x, y, z) = C)

Solve the first three equations for x, y, z and substitute the result in the constraint, and
you find

1

4λ2
+

1

4λ2
+

1

4λ2
= 1 =⇒ 3

4λ2
= 1 =⇒ λ = ± 1

2

√
3.

We therefore find two points on the ellipsoid,

(x, y, z) =
`

1
3

√
3, 1

3

√
3, 1

3

√
3
´

and (x, y, z) =
`
− 1

3

√
3,− 1

3

√
3,− 1

3

√
3
´

By computing the function values you find that the first point maximizes x+ y + z, and
the second minimizes x+ y + z.

13. Problems

101. Minimize xy subject to the constraint

x2 + 1
4
y2 = 1.

Draw the constraint set.

102. A six-sided rectangular box is to hold 1/2

cubic meter. Which shape should the box be
to minimize surface area?

(i) Find the solution without using Lagrange’s
method.

(ii) Use Lagrange multipliers to solve this prob-
lem.

103. Using the methods of this section, find the
shortest distance from the origin to the plane
x+ y + z = 10. (suggestion: instead of mini-
mizing the distance, you can also minimize the
square of the distance.)

104. Use Lagrange multipliers to find the largest
and smallest values of f(x, y) = x under the
constraint g(x, y) = y2 − x3 + x4 = 0.

105. (i) Using Lagrange multipliers, find the
shortest distance from the point (2, 1, 4) to
the plane 2x− y + 3z = 1.

(ii) Using Lagrange multipliers, find the short-
est distance from the point (x0, y0, z0) to the
plane ax+ by + cz = d.

106. (i) Find the shortest distance from the point
(0, b) to the parabola y = x2, using Lagrange
multipliers.

(ii) Find the shortest distance from the point
(0, 0, b) to the paraboloid z = x2 + y2.

(iii) Find the shortest distance from the point

(0, 0, b) to the paraboloid z = x2 + 1
4
y2.

107. Find the volume of the largest rectangular
box with edges parallel to the axes that can be
inscribed in the ellipsoid

2x2 + 72y2 + 18z2 = 288.

108. A six-sided rectangular box is to hold 1/2
cubic meter; what shape should the box be to
minimize surface area?

109. A circular cone has height H, and its base
has radius R. If the volume of the cone is fixed,
then which ratio of radius to height (R : H)
minimizes the surface area of the cone? (The

area of the cone is A = πR
√
R2 +H2, its

volume is V = 1
3
πR2H, and instead of min-

mizing the area you could also minimize the
square of the area.)

110. The post office will accept packages whose
combined length and girth are at most 130
inches (girth is the maximum distance around
the package perpendicular to the length).
What is the largest volume that can be sent in
a rectangular box?

111. The bottom of a rectangular box costs
twice as much per unit area as the sides and
top. Find the shape for a given volume that
will minimize cost.

112. Find all points on the surface

xy − z2 + 1 = 0

that are closest to the origin.

113. The material for the bottom of an aquar-
ium costs half as much as the high strength
glass for the four sides. Find the shape of the
cheapest aquarium that hold a given volume
V .
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114. The plane x−y+z = 2 intersects the cylin-
der x2 + y2 = 4 in an ellipse. Find the points
on the ellipse closest to and farthest from the
origin. (Hint: on the plane you always have

z = 2 − x + y, so you can eliminate z and
make this a problem about functions of (x, y)

only.)



CHAPTER 4

Integrals

1. Overview

1.1. The one variable integral. To begin, let’s quickly recall how the integral of
a function of one variable is defined. Given a function y = f(x) and an interval [a, b], we
choose a partition of the interval [a, b], meaning we split the interval [a, b] into shorter
intervals [x0, x1], [x1, x2], . . . , [xN−1, xN ], where a = x0 < x1 < · · · < xN = b, and we
choose one sample number ξk from each interval [xk−1, xk]. From these ingredients we
compute the Riemann sum

R = f(ξ1)∆x1 + · · ·+ f(ξN )∆xN =

NX
k=1

f(ξk)∆xk

where ∆xk = xk − xk−1 is the length of the kth interval.

a = x0 x1 x2 x3 x4 x5 b = x6 a b

Figure 1: Riemann sums for
R b
a f(x)dx with one partition on the left, and a finer partition on the

right. The dashed lines in the figure on the left indicate where the intermediate points ξk were chosen.

Upon making the intervals [xk−1, xk] shorter (and hence choosing more partition
intervals), the resulting Riemann sums get closer to one particular value, which we call
the integral of the function f(x) over the interval [a, b]:Z b

a

f(x)dx = lim
“as the partition

gets finer”

f(ξ1)∆x1 + · · ·+ f(ξN )∆xN .

The individual terms in the Riemann sum are areas of narrow rectangles in the figure, and
following this lead one finds that the integral is the area between the graph of y = f(x)
and the x-axis (at least in the case that f is a positive function, so that its graph lies
above the x-axis.)

63
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1.2. Generalizing the one variable integral. While there is essentially only one
kind of integral in single variable calculus, there are many different ways of integrating a
function of several variables. All these different notions of “integral” are bound together
by one idea, namely that they all satisfy the following rough description.

In each of the notions of integral you have these ingredients:

• a domain. Depending on the kind of integral, this can be a region in the plane,
in space, a plane curve, a space curve, or even some surface in three dimensional
space.

• a function which is defined on the domain
• a way of measuring the “size” of pieces of the domain

To define the integral you “partition” the region, i.e. you divide it into lots of little pieces.
Given any such partition of the region into smaller pieces, you then form the following
“Riemann sum” X

pieces in the
partition

“
f at sample point

in piece #k

”
×
˘

Size of piece #k
¯

This gives you a number for each way of partitioning the region. As you make the partition
finer, i.e. as you choose more, smaller, pieces, the Riemann sums tend to get closer to one
particular number, which is called the integral of the function. In short, the integral is
the limit of the Riemann sums you find as you take finer and finer partitions:Z

some region

f(x) dx = lim
as the

partition
gets finer

X
pieces in the

partition

“
f at sample point

in piece #k

”
×
˘

Size of piece #k
¯

Depending on what kind of function we have, and what kind of region the function is
defined on, and also how we decide to measure the size of the small pieces in the partition,
this process can led to many different kinds of integrals. The integrals we will meet in this
chapter are double integrals, triple integrals, line integrals, and surface integrals.
See Table 1.

2. Double Integrals

Let z = f(x, y) be a function of two variables defined on some region D in the plane.
The double integral of f over D is defined in terms of Riemann sums, following the
general scheme described in the previous section. To form a Riemann sum you first need
a partition of the region D into smaller regions D1, . . . , DN , and you need to choose a
sample point (xk, yk) from each region Dk. If ∆Ak is the area of region Dk, then the
Riemann sum corresponding to the partition D1, · · · , DN and the choice of sample points
(x1, y1), . . . , (xN , yN ) is

(60) R = f(x1, y1)∆A1 + · · ·+ f(xN , yN )∆AN =

NX
k=1

f(xk, yk) ∆Ak.

If the partition is “sufficiently fine” then this Riemann sum will in many cases be close to
one particular number, which we will call the integral of the function f over the region D.
Thus

(61)

ZZ
D

f(x, y) dA = lim
as the partition

“gets finer&finer”

NX
k=1

f(xk, yk) ∆Ak.

To make this more precise one has to resort to εs and δs, which results in the following
definition
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Figure 2: On the left: a region in the plane with some partition. Many pieces of the partition are
rectangles. This is a common choice, but the pieces don’t have to be rectangles: here the pieces that
touch the boundary of the domain have at least one curved edge. On the right: the same region with
two finer partitions.

2.1. Definition. If for every ε > 0 there is a δ > 0 such that the Riemann sum
corresponding to any partition of the region D into smaller pieces D1, . . . , DN whose
pieces have diameter no more than δ satisfies˛̨̨̨

˛I −
NX
k=1

f(xk, yk) ∆Ak

˛̨̨̨
˛ < ε

then we say that ZZ
D

f(x, y) dA = I.

On one hand it can be shown in many cases that that the integral of a function
exists according to the above definition. On the other hand the ε-δ definition is neither
a practical method of computing such integrals, nor does it provide an easy intuitive
understanding of the properties of the integral. Therefore, we will stick to the less precise
definition (61) in this course.

Kind of integral Domain
Typical piece of

partition
Size of piece

“Good old 221
Integral”R b
a
f(x) dx

interval
a ≤ x ≤ b

small subinterval
(xk−1, xk)

length of subinterval
∆xk = xk − xk−1

Multiple integralRR
D
f(x, y)dA

region in
the plane

tiny sub domain
area ∆A of

tiny sub domain

Multiple integralRRR
D
f(x, y, z)dV

region
in space

tiny sub domain
volume ∆V of

tiny sub domain

Line integralR
C
f(x, y) ds

curve in
the plane

short sub arc
of curve

length ∆s of
the sub arc

Line integralR
C
f(x, y, z) ds

curve
in space

short sub arc
of curve

length ∆s of
the sub arc

Surface integralRR
S
f(x, y, z) dA

surface
in space

small patch
on the surface

area ∆A of
the patch

Table 1: A list of the different kinds of integrals that we will encounter in math 234.
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Figure 3: On the left: the domain of the function f partitioned into 6 × 5 pieces, each with the
same width ∆x and height ∆y. To form a Riemann sum we have to choose one sample point (xk, yk)
in each piece Dk of the partition. Below we will always choose the upper-right-hand corner of the
rectangle to be the sample point. On the right: Any piece in the partition corresponds to a term in
the Riemann sum of the form f(xk, yk)∆Ak. This is the volume of a block of height f(xk, yk), and
base Dk, which is approximately the volume of the region under the graph of f and above the piece
Dk. Adding all these volumes together you see that a Riemann sum approximates the total volume
between the graph and the region D.

2.2. The integral is the volume under the graph, when f ≥ 0. If the function
f is positive, then its graph lies above the xy-plane, and there is a simple interpretation
of the integral, namely ZZ

D

f(x, y) dA = Volume of R,

where R is “the region under the graph of f above the domain D” – in symbols,

(62) R =
˘

(x, y, z) : (x, y) lies in D, and 0 ≤ z ≤ f(x, y)
¯
.

To see why this is so, let’s imagine that we have a positive function z = f(x, y) defined
on some region D in the xy-plane, and let’s try to compute the integral

RR
D
f(x, y)dA

“geometrically.” To compute the integral we begin by finely partitioning the region D
into smaller regions D1, D2, . . . , DN (see Figure 3 on the left where the small pieces were
themselves chosen to be rectangles). We also choose one “sample point” (xk, yk) in each
region Dk. The Riemann sum we get this way is

R = f(x1, y1)∆A1 + · · ·+ f(xN , yN )∆AN

where ∆Ak is the area of Dk. The kth term, f(xk, yk)∆Ak, is the volume of a block whose
base is Dk and whose top is some point on the graph of the function above the region
Dk. This volume is almost, but usually not exactly the same as the volume of the region
between the graph of the function and the small region Dk in the xy-plane. The volume
f(xk, yk)∆Ak of the block above Dk is not exactly the same as the volume of the region
under the graph because the top of the block is a piece of a horizontal plane while the
graph of f will usually have a slope.
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y

x

z

y

x

z

Figure 4: Approximating the region under the graph of z = f(x, y) from Figure 3 by vertical blocks.
The base of each block is a rectangle in a partition of the domain of f . As you choose finer and finer
partitions, the region occupied by the vertical blocks gets closer to the region under the graph of f .

The total Riemann sum is therefore the sum of the volumes of such blocks, (see
Figure 4) and this will approximate the volume between the graph of f and the domain of
integration D. The finer the partition, the better the approximation so we can conclude1

that the limit of the Riemann sums is the volume under the graph, to wit, the volume of
the region R defined in (62).

2.3. How to compute a double integral. So far, we have a definition for the
double integral

RR
D
f(x, y)dA, and an interpretation of the integral as “volume under

the graph of f .” What is missing is a method of actually computing the integral. In
this section we’ll see how you can compute a double integral by doing two one-variable
integrals.

Let’s take another look at the integral of the function f over the rectangle

D =
˘

(x, y) : a ≤ x ≤ b, c ≤ y ≤ d
¯
,

from the previous section.

We again partition D into smaller rectangles, as in Figure 3, but instead of just
counting them and numbering the pieces 1, 2, . . . , N , we can use the fact that the smaller
rectangles appear in rows and columns. If we take N rectangles in the x direction, and
M in the y direction, then the smaller rectangles will measure ∆x by ∆y, where

∆x =
b− a
N

, ∆y =
d− c
M

.

We let (xk, yl) be the upper-right-hand corner of the rectangle in the kth column from the
left, and the lth row from below. Then

(63) xk = a+ k∆x, yl = c+ l∆y.

1This is not a very precise “proof,” but to prove that the limit of Riemann sums exists you would
have to use ε&δ arguments.



68 4. INTEGRALS

The Riemann sum corresponding to this partition and choice of sample points (xk, yl) is

(64) R =
X

f(xk, yl)∆x∆y = f(x1, y1)∆x∆y + · · · + f(xN , y1)∆x∆y

+ f(x1, y2)∆x∆y + · · · + f(xN , y2)∆x∆y

...

+ f(x1, yM )∆x∆y + · · · + f(xN , yM )∆x∆y

Since we are choosing the upper-right-hand corner of each rectangle as sample point in that
rectangle, the sample point for the rectangle at the top-right is (xN , yM ). (See Figure 3
on the left.) Therefore, in this summation k can have any value with 1 ≤ k ≤ N and l
can be any integer with 1 ≤ l ≤M .

The term corresponding to rectangle (k, l) represents the volume of a block whose
height is f(xk, yl) and whose base is a ∆x×∆y rectangle. Together these blocks approx-
imate the region between the graph of the function and the xy-plane.

y

x

z

x = a

x = b

y = d

y = c

Figure 5: This picture shows the blocks corresponding to all those terms in the Riemann sum R from
equation (64) in which y = yk. These terms

˘
f(x1, yk)∆x + · · · + f(xN , yk)∆x

¯
∆y give you the

total volume of one row of “matchsticks” from Figure 4. In this sum y is frozen at the value y = yk, so

you can think of f(x1, yk)∆x+ · · ·+ f(xN , yk)∆x as a Riemann sum for the integral
R b
a f(x, yk) dx.

Consider the terms on the kth row in equation (64); after factoring out ∆y you get

row #k of (64) = ∆y
n
f(x1, yk)∆x+ f(x2, yk)∆x+ · · ·+ f(xN , yk)∆x

o
.

Note that in this sum the function is always evaluated at the same value of y, namely yk.
The sum between braces {· · · } is actually a Riemann sum for the one-variable integral

I =

Z b

a

f(x, yk)dx

in which we treat f(x, yk) as a function of x only and consider the variable y to be frozen
at y = yk. The value of this integral will of course depend the value at which y is frozen,
so it is better to write

I(y) =

Z b

a

f(x, y)dx.

With this notation we find that

row #k of (64) ≈ ∆y ×
˘
I(yk)

¯
= I(yk)∆y.

To find the value of the Riemann sum which approximates the double integral
RR
D
f(x, y)dA

we add the rows in (64) and find

R ≈ I(y1)∆y + I(y2)∆y + · · ·+ I(yM )∆y.
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The sum on the right is again a Riemann sum for a one variable integral, namely,
R d
c
I(y)dy.

Therefore we find that

R ≈
Z d

c

I(y)dy

If we now take the limit in which we let the size of the pieces in the partition go to zero,
then it can be shown (with quite a bit of effort) that the approximation above gets better,
and that one has ZZ

D

f(x, y)dA =

Z d

c

I(y)dy,

and hence, remembering the definition of I(y), we have found the following method of
computing a double integral.

2.4. Theorem. If f(x, y) is a function defined on a rectangle

D = {(x, y) : a ≤ b ≤ b, c ≤ y ≤ d} ,

then the double integral of f over D is given by

(65)

ZZ
D

f(x, y)dA =

Z d

c

nZ b

a

f(x, y)dx
o
dy.

One can also first integrate with respect to y and then x, so that

(66)

ZZ
D

f(x, y)dA =

Z b

a

nZ d

c

f(x, y)dy
o
dx.

The second way of computing the double integral
RR
D
f(x, y) dA, i.e. equation (66), follows

by the same reasoning that led us to (65), except in (64) one groups the terms by columns
rather than rows.

To compute the right hand side in this equation we have to compute two one-variable
integrals. The expressionZ d

c

nZ b

a

f(x, y)dx
o
dy =

Z d

c

Z b

a

f(x, y) dx dy

is called an iterated integral.

2.5. Example: the volume under the graph of the paraboloid z = x2 + y2

above the square Q = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. The double integral we have to
compute is

Volume =

ZZ
Q

`
x2 + y2´dA

and to compute it we write it as an iterated integralZZ
Q

`
x2 + y2´dA =

Z 1

0

nZ 1

0

(x2 + y2)dx
o
dy

In the inner integral the variable y is frozen, so to compute the inner integral, you simply
treat y as a constant, and integrate with respect to x. You getZ 1

0

(x2 + y2)dx =
ˆ

1
3
x3 + y2x

˜1
x=0

= 1
3

+ y2.

(This is I(y) in the notation of the previous section.)
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x

y

z

a

b x

y

z

Figure 6: The graph of z = x2 + y2 above the unit square Q on the left, and rectangle {(x, y) : 0 ≤
x ≤ a and 0 ≤ y ≤ b}, on the right, together with the surrounding block. What fraction of the volume
of the block lies below the graph?

To get the double integral we must still do the outer integral:ZZ
Q

`
x2 + y2´dA =

Z 1

0

nZ 1

0

(x2 + y2)dx
o
dy

=

Z 1

0

`
1
3

+ y2´dy
=
ˆ

1
3
y + 1

3
y3˜1

0

= 1
3

+ 1
3

= 2
3
.

Since the surrounding block (Figure 6) is a 1× 1× 2 block, its volume is 2, and the region
under the graph occupies exactly one third of the whole block.

To compute the volume of the region under the graph of the same function above the
rectangle {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b} one can compute either of the iterated integralsZ a

0

Z b

0

`
x2 + y2´ dy dx or

Z b

0

Z a

0

`
x2 + y2´ dx dy.

2.6. Double integrals when the domain is not a rectangle. We have seen how
to compute a double integral when the domain is a rectangle. The reasoning which led
us from a double integral to an iterated integral also works for non rectangular domains,
provided they are not too complicated. Suppose you want to compute

RR
D
f(x, y)dA where

the domain D is the region caught between the graphs of two functions:

D =
˘

(x, y) : a ≤ x ≤ b, f(x) ≤ y ≤ g(x)
¯
.

We again partition the region by cutting it along many vertical lines x = x1, x = x2,
. . . , x = xN , and many horizontal lines y = y1, . . . , y = yM . Most of the pieces of the
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partition will be rectangles, but those which overlap with the boundary of the region D
may have curved edges. See Figures 7 and 8.

Figure 7: The region between the graphs of y = f(x) and y = g(x).

This time, all the terms in a Riemann sum corresponding to one particular strip
xk−1 ≤ x ≤ xk add up to a Riemann sum for an integral over the y variable,Z d(x)

c(x)

f(xk, y) dy × ∆x,

and adding all these we get the iterated integral

(67)

ZZ
D

f(x, y) dA =

Z b

a

nZ d(x)

c(x)

f(x, y) dy
o
dx.

2.7. An example–the parabolic office building. Consider the region under the
graph of f(x, y) = x+ y, above the domain

D =
˘

(x, y) : 0 ≤ x ≤ 1, (1− x)2 ≤ y ≤ 1
¯
.

The volume of this region is given by

V =

ZZ
D

(x+ y)dA.

We can compute this volume by finding the following iterated integral

(68) V =

Z 1

x=0

Z 1

(1−x)2
(x+ y) dy dx.

Alternatively, the region D can also be described as

D = {(x, y) : 0 ≤ y ≤ 1, 1−√y ≤ x ≤ 1} .

This leads to the following iterated integral for the volume

(69) V =

Z 1

y=0

Z 1

1−
√
y

(x+ y) dx dy.

Both iterated integrals should give the same answer. Let’s compute the first one:
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Figure 8: On the left: the domain of integration, a partition, and all pieces in the partition corre-
sponding to one value of y. On the right: The “parabolic office building,” being the region whose
volume is computed in example 2.7

V =

Z 1

0

Z 1

(1−x)2
(x+ y) dy dx

=

Z 1

0

ˆ
1
2
xy + 1

2
y2˜1

(1−x)2
dx

=

Z 1

0

ˆ
x
`
1− (1− x)2´+ 1

2

`
12 − (1− x)4´˜ dx

=

Z 1

0

ˆ
2x2 − x3 + 1

2

`
4x− 6x2 + 4x3 − x4´˜ dx

=

Z 1

0

ˆ
2x2 − x3 + 2x− 3x2 + 2x3 − 1

2
x4˜ dx

= 2
3
− 1

4
+ 1− 1 + 2× 1

4
− 1

2
× 1

5

= 16
15
.

Note that even though the function we are integrated is very simple (it’s just x + y) the
integral can still become complicated because of the shape of the domain D over which
we are integrating.

2.8. Double integrals in Polar Coordinates. Sometimes Cartesian coordinates
are just not the best choice. For instance, a disc or radius R, centered at the origin, is very
easy to describe in polar coordinates as “all points with r ≤ R.” In Cartesian coordinates
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you need Pythagoras, and you have to say “all points with x2 + y2 ≤ R2.” In the same

x

y

Figure 9: Left: A “polar rectangle” and a partition by lines θ =constant (the spokes) and r =constant
(the arcs). Right: The area of a small piece of such a partition is approximately ∆A ≈ ∆r × r∆θ.

spirit a “polar rectangle” is a domain of the form

R = {all points with θ0 ≤ θ ≤ θ1, r0 ≤ r ≤ r1} .

See Figure 9 (on the left). There is a very natural way of partitioning such a region into
many smaller regions, by cutting the region along curves of constant r (arcs centered at
the origin) or constant θ (rays emanating from the origin). If the partition is sufficiently
fine, then the pieces in the partition will almost be real Cartesian rectangles, with sides
r∆θ and ∆r (∆θ being the angle between adjacent rays, and ∆r being the difference in
radius between two consecutive arcs). The area of such a small partition piece is therefore
∆A ≈ r∆θ×∆r, and one arrives at the following formula for the integral of a function of
a polar rectangle

(70)

ZZ
R

f(x, y) dA =

Z r1

r0

Z θ1

θ0

F (r, θ) rdθ dr =

Z θ1

θ0

Z r1

r0

F (r, θ) rdr dθ.

Here F (r, θ) = f(r cos θ, r sin θ) is the function f(x, y) written in polar coordinates.2

There is a similar formula for more complicated domains. If a domain can be described
in polar coordinates by

D = {all points with α ≤ θ ≤ β, a(x) ≤ r ≤ b(x)}

and if you want to integrate a function z = f(x, y) of this domain, then you can again
partition the domain D into many small pieces which are bounded by circular arcs centered
at the origin, and lines emanating from the origin. The area of a small piece in the partition
is once again given by ∆A ≈ ∆r × r∆θ, and therefore the integral of f over D is

(71)

ZZ
D

f(x, y) dA =

Z β

α

Z b(θ)

a(θ)

F (r, θ) r dr dθ.

2It is very common to use the same letter f for both functions, i.e. to write f(x, y) for f as a function
of Cartesian coordinates, and also f(r, θ) for the same function but written in Polar coordinates. This
begs the question of what f(0.3, 1.24) means – are (0.3, 1.24) the Polar or Cartesian coordinates of the
point at which f is to be evaluated? To avoid this kind of ambiguity we will try to use different letters
for the same quantity regarded as a function of Cartesian coordinates, and of Polar coordinates.
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Figure 10: The gray region is the region between the polar graphs r = a(θ) and r = b(θ).

x

y

z

π/4

Figure 11: The graph of the function z = aθ in polar coordinates is called the helicoid. Left: two
turns of a helicoid. Right: one quarter turn of a helicoid with a = 1

2
is show. The volume under the

helicoid is given by a double integral which is best computed using polar coordinates. Which fraction
of the volume in the surrounding quarter cylinder lies beneath the helicoid?

2.9. Example: the volume under a quarter turn of a helicoid. A helicoid is
the surface which in polar coordinates is given by

z = aθ

where a > 0 is some constant. The polar angle is multivalued, because at any point in
the plane the polar angle is only determined up to multiple of 2π, except at the origin,
where the polar angle θ isn’t defined at all. If you take all the possible different values the
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polar angle of a point (x, y) can have the graph of z = θ looks like the picture on the left
in Figure 11.

If we choose the constant a = 1
2
, and take the first quarter turn of this surface, on

which 0 ≤ θ ≤ 1
2
π, then we get the picture on the right in Figure 11. In that drawing we

have only included the part with 0 ≤ r ≤ 1. To compute the volume of the region under
the quarter helicoid using Cartesian coordinates, you would have to compute this integral

V =

Z 1

0

Z √1−x2

0

1
2

arctan
y

x
dy dx.

(Try to set up this integral yourself!)

In Polar coordinates things are easier. The domain is a polar rectangle,

0 ≤ r ≤ 1, 0 ≤ θ ≤ 1
2
π,

and the function is very simple,

F (r, θ) = 1
2
θ.

The double integral that represents the volume is therefore

V =

ZZ
D

1
2
θ dA

=

Z 1

0

Z π/2

0

1
2
θr dθ dr

=
π2

32
.

3. Problems

115. Compute these iterated integrals:

(i)

Z 1

0

Z 4

0
x dy dx (ii)

Z 1

0

Z 4

0
x dx dy (iii)

Z 1

−1

Z x2

0
dy dx

(iv)

Z 1

0

Z y

0

sin y

y
dx dy (v)

Z 1

0

Z θ

0

sin θ

θ
dr dθ (vi)

Z 1

0

Z √1−x2

0
dy dx

116. What is wrong with the iterated integral

Z 1

x

nZ 1

0
sin(πx)dx

o
dy?

Is the answer a number – does it depend on x or y?

117. Is the following true or false?

For any two functions f(x) and g(y) one has

Z 1

0

Z 2

0
f(x)g(y) dx dy =

Z 1

0
f(x) dx ×

Z 2

0
g(y) dy .

Explain your answer (if you claim “true” give a proof, if you claim “false” give a counterexample.)

118. Answer the question posed in Figure 6.
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119. Compute the following double integrals. In each case sketch the domain of integration and show
which iterated integral you must compute to find the given double integral.

(i)

ZZ
D

(1 + x) dA where D = {(x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 4}.

(ii) Compute

ZZ
D

(x+ y) dA where D = {(x, y) : |x| ≤ 1, 0 ≤ y ≤ 4}

(iii) Compute

ZZ
D
xy dA where D = {(x, y) : 0 ≤ x ≤ y, 1 ≤ y ≤ 2}.

(iv) Compute

ZZ
D
dA where D =

˘
(x, y) : 1

2
y2 ≤ x ≤ √y, 0 ≤ y ≤ 1

¯
.

(v) Compute

ZZ
D

x2

y2
dA where D = {(x, y) : 1 ≤ x ≤ 2, 1 ≤ y ≤ x}.

(vi) Compute

ZZ
D

y

ex
dA where D =

˘
(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x2

¯
.

(vii) Compute

ZZ
D
x cos y dA where D =

n
(x, y) : 0 ≤ x ≤

p
π/2, 0 ≤ y ≤ x2

o
.

(viii) Compute:

ZZ
D

p
x3 + 1 dA where D = {(x, y) : 0 ≤ y ≤ 1,

√
y ≤ x ≤ 1}.

(ix) Compute:

ZZ
D
y sin(x2) dA where D =

˘
(x, y) : 0 ≤ y ≤ 1, y2 ≤ x ≤ 1

¯
.

(x) Compute:

ZZ
D
x
p

1 + y2 dA where D =
˘

(x, y) : 0 ≤ x ≤ 1, x2 ≤ y ≤ 1
¯

.

(xi) Compute:

ZZ
D

2
√

1− x2
dA where D is the triangle bounded by the y axis, the line y = 1 and

the line y = x.

120. Find the volumes of the following regions by computing a double integral.

(i) the region bounded by z = x2 + y2 and z = 4.

(ii) the region in the first octant bounded by y2 = 4− x and y = 2z.

(iii) the region in the first octant bounded by y2 = 4x, 2x+ y = 4, z = y, and y = 0.

(iv) the region in the first octant bounded by x+ y + z = 9, 2x+ 3y = 18, and x+ 3y = 9.

(v) the region in the first octant bounded by x2 + y2 = a2 and z = x+ y.

(vi) the region bounded by 4x2 + y2 = 4z and z = 2.

(vii) the region bounded by z = x2 + y2 and z = y.

121. The average value of a function f(x, y)over a domain D is by definition

average f over D =

RR
D f(x, y) dA

area of D

Find the average value of f(x, y) = ey
√
x+ ey on the rectangle with vertices (0, 0), (4, 0), (4, 1) and

(0, 1).

122. Suppose f(x) is a positive function defined on an interval a ≤ x ≤ b. Let A be the area under the
graph of y = f(x), (a ≤ c ≤ b), and let B be the area under the graph of y = f(x)2 (a ≤ c ≤ b)

(i) Compute
R b
a

R f(x)
0 dydx.

(ii) Compute
R b
a

R f(x)
0 ydydx.

123. Let V be the volume under the graph of the function z = 2xy
x2+y2

, above the region

D =
˘

(x, y) : x ≥ 0, y ≥ 0, x2 + y2 ≤ 1
¯
.

(See chapter 1 for a picture of the graph of this function.)

(i) Write an iterated integral for the volume V , using Cartesian coordinates. (You don’t have to
compute the integral you get.)

(ii) Compute V using polar coordinates.
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124. Let V be the volume under the graph of z = xy above the domain

D =
˘

(x, y) : x ≥ 0, y ≥ 0, x2 + y2 ≤ 4
¯
.

Try to draw the region D, and the graph of z = xy above D.

(i) Use Cartesian coordinates to compute V . (Hint: this is similar to part (i) of the previous problem,
but the integral in this problem isn’t as bad.)

(ii) Use Polar Coordinates to compute V .





Answers and Hints

(2) You should use a graphing program to produce pictures of the graphs in these prob-
lems.

(2i) z − x2 = 0. Domain R2. Graph is a parabolic cylinder and consists of horizontal lines
perpendicular to the xz-plane, going through the parabola y = x2 in that plane.

Level sets: parallel straight lines x = ±
√
z if z > 0, the x axis if z = 0, the empty set if

z < 0.

(2ii) z2 − x = 0. Implicit function. At least two functions are defined, namely z = ±
√
x.

Domain: all points (x, y) with x ≥ 0. Graph is half a parabolic cylinder and consists
of horizontal lines perpendicular to the xz-plane, going through the parabola z =

√
x (or

z = −
√
x, depending on which function you choose) in that plane.

Level sets (assuming we choose the function z = +
√
x): the line x = z2 if z ≥ 0, empty

set otherwise.

(2iii) z − x2 − y2 = 0. Domain is the whole plane. Graph is a paraboloid of revolution,
obtained by rotating the parabola z = x2 in the xz-plane around the z axis.

Level sets: circle with radius
√
z for z > 0, the origin for z = 0 (note: this level set is a

point rather than a curve), empty for z < 0.

(2iv) z2 − x2 − y2 = 0. Implicit function. Domain all of R2. Possible functions are z =

±
p
x2 + y2. Graph is the cone obtained by rotating the half line z = x, x ≥ 0 in the xz-plane

around the z axis (or the half line z = −x, x ≥ 0, if you chose z = −
p
x2 + y2.)

Level sets (assuming we choose z = +
p
x2 + y2): circle with radius z when z > 0, origin

when z = 0, empty when z < 0.

(2v) xyz = 1. Domain the whole plain with the x and y-axes removed, i.e. all points (x, y)
with xy 6= 0. Function is f(x, y) = 1

xy
. For each y the graph is the hyperbola z = 1/(yx)

which is just the standard hyperbola z = 1/x stretched vertically by a factor 1/y. As y → 0
this factor goes to ∞.

(2vi) xy/z2 = 1. Implicit function. Domain first and third quadrants (all points with xy > 0).
Functions z = ±√xy. Cross sections with planes y =constant are half parabolas.

Note: Harder to see, but the surface with equation xy = z2 is in fact the cone obtained
by rotating the x-axis around the line x = y in the xy-plane.

(4i) (0, 1
2
) is in the square Q, so it is the point closest to (0, 1

2
).

The point (0, 1) on the top edge of the square is closest to (0, 2).
The corner point (1, 1) is closest to (3, 4).

79
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(4ii) f(0, 1
2
) = 0; f(0, 2) = 1 and f(3, 4)) =

√
22 + 32 =

√
13.

(4iii) The zero set of f is the square Q.

(4iv) The level set at level −1 is empty. The others are “rounded rectangles,” see this drawing,
in which the square is grey, the dashed lines are given by x = ±1 or y = ±1.

x

y

(4v) The lines x = ±1 and y = ±1 divide the plane into nine regions. On each region the
function is given by a different formula. Here they are:

f(x, y) if . . .
0 (x, y) in Q
x− 1 x ≥ 1, |y| ≤ 1
y − 1 |x| ≤ 1, y ≥ 1
−x− 1 x ≤ −1, |y| ≤ 1
−y − 1 |x| ≤ 1, y ≤ −1p

(x− 1)2 + (y − 1)2 x ≥ 1 and y ≥ 1p
(x− 1)2 + (y + 1)2 x ≥ 1 and y ≤ −1p
(x+ 1)2 + (y − 1)2 x ≤ −1 and y ≥ 1p
(x+ 1)2 + (y + 1)2 x ≤ −1 & y ≤ −1

(6) See answers to problem 2.

(7) The graph of f is obtained by taking the part of the graph of z = g(x) with x ≥ 0 and
rotating it around the z-axis.

Each level set of f are circles, the origin, or is the empty set.

(8i) The two rectangular strips −3 ≤ x ≤ 3, 2 ≤ y <∞ and −3 ≤ x ≤ 3,−∞ < y ≤ −2.

(8ii) By definition arcsin(x) is only defined if −1 ≤ x ≤ 1. For arcsin(x2 + y2 − 2) to be
defined, we must therefore have −1 ≤ x2 + y2 − 2 ≤ 1, i.e. 1 ≤ x2 + y2 ≤ 3.

The domain of this function is the ring-shaped region between the circles with radii 1 and√
3, both centered at the origin. Circles are included in the domain.

(8iii) The way this function is written both
√
x and

√
y must be defined, so the domain

consists off all (x, y) with x ≥ 0 and y ≥ 0.
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(8iv)
√
xy must exist, which happens for all (x, y) in the first and third quadrants (axes

included.)

(8vi) The region in the plane given by x2 +4y2 ≤ 16, which is the region enclosed by an ellipse
with major axis of length 4, along the x axis, and minor axis of length 2 along the y-axis. The
ellipse is included.

(9) The level sets of the function whose graph is a cone are equally spaced circles (the level
set at level c is a circle with radius c). Hence the one on the right corresponds to the cone,
and the one on the left corresponds to the paraboloid.

(10i) At time t we have a line through the origin with slope sin t. As time progresses this lines
turns up and down, and up and down, etc.

(10ii) Same as previous problem, but twice as fast.

(10iii) At all times one sees the graph of y = sinx stretched vertically by a factor t.

(10iv) Same as previous problem, but twice as fast.

(10v) The graph of y = sin 2x stretched vertically by a factor t.

(10vi) Parabola with its minimum on the x-axis at x = t. So we see the parabola y = x2

translating from the left to the right with constant speed 1.

(10vii) Parabola with its minimum on the x-axis at x = sin t. So we see the parabola y = x2

translating back and forth horizontally every 2π time units.

(10x) At time t we see Agnesi’s witch, i.e. the graph y = a/(1 + x2) with amplitude a =
1/(1 + t2). Thus we see a bump whcich starts out small at t = −∞, grows to its maximal
size at time t = 0, and then decays again, until it vanishes at t = +∞.

(11) The graph of y = g(x − a) is obtained from the graph of y = g(x) by translating the
graph of y = g(x) by a units to the right.

Hence the graph of g(x− ct) is the graph of g(x) translated by ct units to the right. As
time changes the graph of g(x− ct) therefore moves with velocity c to the right.

(12) If you know the graph of a function y = g(x), then you get the graph of y = cg(x)
by stretching the graph of g vertically by a factor c (here c is a constant.) If you allow this
constant to depend on time, e.g. as in this problem by setting c = cos(ωt), then the “movie”
you get is of a version of the graph of g which is growing and shrinking vertically.

y=cos(ωt)g(x)

y=g(x)
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(16) The level set at level z = c is the set of points which satisfy the equation

x2 − y2

x2 + y2
= c.

You can simplify this equation by rewriting it as follows:

x2 − y2

x2 + y2
= c ⇐⇒

x2 − y2 = cx2 + cy2 ⇐⇒

(1− c)x2 = (1 + c)y2 ⇐⇒

y

x
= ±

r
1− c
1 + c

.

So we see that if 1−c
1+c
≥ 0 the level set consists of two straight lines, with the indicated slopes.

This happens exactly when −1 < c < 1.

When c = ±1 we get either the equation x2 = 0 or y2 = 0, so that the corresponding
level sets consist of either the y-axis or the x-axis.

(17) For f we have

lim
x→0

f(x,mx) = lim
x→0

x2 −m2x2

x2 +m2x2
=

1−m2

1 +m2
.

In fact this computation shows that f is constant on lines of the form y = mx, which we
already found in the previous problem.

(18i) The function has been defined for all (x, y), so its domain is the whole plane. The graph
looks like this, roughly:

Note that the drawing doesn’t tell you what the function values are on the jump curve,
y = |x|.

(18ii) To compute A we must take the limit as x → 0 of limy→0 f(x, y), so we must know
this limit when x 6= 0.

For all x 6= 0 one has limy→0 f(x, y) = 0. Hence A = 0.

To find B, compute for any y 6= 0

lim
x→0

f(x, y) =

(
1 if y > 0

0 if y < 0.

Hence the iterated limit

lim
y→0

lim
x→0

f(x, y)

does not exist (limits for y ↗ 0 and y ↘ 0 are different).
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(18iii) The limit doesn’t exist because one of the iterated limits A and B does not exist.

(18iv) The function is continuous at all points (x, y) except those with y = |x|, where the
function has a jump discontinuity.

(20i)

lim
(x,y)→(0,0)
y=mx

h(x, y)

= lim
x→0

h(x,mx)

= lim
x→0

x4 −m2x2

x4 +m2x2

= lim
x→0

x2 −m2

x2 +m2
.

If m 6= 0 then this limit is
−m2

m2
= −1

But when m = 0 you get

lim
x→0

x2 −m2

x2 +m2
= lim
x→0

x2

x2
= 1.

(20ii) The two iterated limits
lim
x→0

lim
y→0

h(x, y) = 1

and
lim
y→0

lim
x→0

h(x, y) = −1

are different, so the limit lim(x,y)→(0,0) h(x, y) does not exist.

(20iv)

lim
(x,y)→(0,0)

y=mx2

h(x, y)

= lim
x→0

h(x,mx2)

= lim
x→0

x4 −m2x4

x4 +m2x4

= lim
x→0

1−m2

1 +m2

=
1−m2

1 +m2
.

So the answer does depend on m, i.e. depending on which parabola y = mx2 you follow to
get to the origin, you get a different limit.

(22ii) −2xy sin(x2y), −x2 sin(x2y) + 3y2

(22iii) (y2 − x2y)/(x2 + y)2, x3/(x2 + y)2

(22vii) 2xex
2+y2 , 2yex

2+y2

(22viii) y ln(xy) + y, x ln(xy) + x
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(22ix) −x/
p

1− x2 − y2, −y/
p

1− x2 − y2

(22xii) tan y, x/ cos2 y

(22xiii) −1/(x2y), −1/(xy2)

(26i) The linear approximation formula is equation (10), in which x0 = a = 3, y0 = b = 1,
and ∆x = x− a = x− 3, ∆y = y − b = y − 1. So for this problem the linear approximation
of f(x, y) = xy2 at (3, 1) is

f(x, y) ≈ 3 + (x− 3) + 6(y − 1) = x+ 6y − 6.

This approximation is only expected to be good when (x, y) is close to (3, 1). The approxi-
mation contains an error which is small compared to |x− 3| and |y − 1|.

FAQ: What is the relation between the linear approximation and the tangent plane?

Answer: They are very closely related: the tangent plane is the graph of the linear approxima-
tion. The linear approximation is the equation for the tangent plane. To compute either you
have to do the same thing.

(26ii) x/y2 ≈ 3 + (x− 3)− 6(y − 1) = x− 6y + 6 when x is close to 3 and y is close to 1.

(26iii) sinx+ cos y ≈ −1 + (−1)(x− π) + (0)(y − π) = π − 1− x when x is close to π and
y is close to π.

(26iv) xy
x+y
≈ 3

4
+ 1

16
(x− 3) + 9

16
(y − 1) when x is close to 3 and y is close to 1.

(27) z = 1

(28) z = 6(x− 3) + 3(y − 1) + 10

(29) z = (x− 2) + 4(y − 1/2)

(30) The graph has equation z = x2 − 2xy, The tangent plane has equation z = 2x− 4y.

The part of the tangent plane which lies under the graph is given by

2x− 4y < x2 − 2xy,

i.e. by

x2 − 2xy − 2x+ 4y > 0

With some luck you see that the LHS can be factored as

x2 − 2xy − 2x+ 4y = (x− 2)(x− 2y),

so that the part of the tangent plane which is under the graph consists of those points (x, y)
for which either

x > 2, and x > 2y

or

x < 2, and x < 2y

holds.
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1 2 3

1

2

(31i) The tangent plane has equation z = ab+ b(x− a) + a(y − b) = bx+ ay − ab.

(31ii) The point (x, y, z) lies on the intersection if z = xy and z = bx + ay − ab. Therefore
x and y must satisfy xy − bx− ay + ab = 0. This equation factors as follows:

xy − bx− ay + ab = (x− a)(y − b) = 0,

so that the intersection contains the line x = a, z = ay, and also the line y = b, z = bx.

(32i) Solve for z: z = ±
p

2x2 + 3y2 − 4. In this problem we are looking at the point (1, 1,−1)

so we have the graph of z = f(x, y) = −
p

2x2 + 3y2 − 4. The partials are

∂f

∂x
=

−2xp
2x2 + 3y2 − 4

,
∂f

∂y
=

−3yp
2x2 + 3y2 − 4

so that, at (1, 1,−1) you get fx = −2, fy = −3. There for the equation for the tangent plane
is z = −2(x− 1)− 3(y − 1)− 1

(33i) The tangent plane has equation z = z0 +A(x−x0)+B(y−y0). By putting the variables
x, y, z on one side, and all the constants on the other, you can write this as

Ax+By − z = Ax0 +By0 − z0.

This is the equation for a plane whose normal is ~n =
“
A
B
−1

”
. Any other multiple of this vector

is also a valid normal to the plane, in particular,
“−A
−B
+1

”
is OK.

(33ii) We want a normal to the graph of z = f(x, y) = 1
2
x2 + 2y2 at the point P . By the

previous problem a normal is given by ~n =

„
fx(2,1)
fy(2,1)
−1

«
=
“

2
4
−1

”
.

A line through P in the direction of ~n is given by ~r(t) =
“

2
1
4

”
+ t
“

2
4
−1

”

(34) Below you see the graph of a function and two (solid) lines which are tangent to the
graph. On one line you have x = a (hence constant), and its slope is fx(a, b); on the other
you have y = b, and it has slope fy(a, b).
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The tangent plane to the graph (not drawn here, but see Figure 2 in the notes) is the plane
containing the two lines in the drawing.

(35i) At (2, 1) the gradient is ~∇T =
“
−2x

−9y2

”
=
`−4
−9

´
. To cool off as fast as possible the

bug should go in the opposite direction, i.e. in the direction of ( 4
9 ), or any positive multiple

of this vector.

(35ii) At (1, 3) the gradient is ~∇T =
` −2
−81

´
. To keep its temperature constant the bug should

walk in any direction perpendicular to the gradient. The vector
`

81
−2

´
is perpendicular to the

gradient, so the bug should go in the direction of
`

81
−2

´
or the opposite direction, (−81

2 ).

Any non-zero multiple of (−81
2 ) is also a valid answer, since we can only give the direction

and not the speed.

Remember: the vector (−ba ) is perpendicular to ( ab ).

(36) The function is f(x, y) = x ln(xy). We have f(2, 1
2
) = 2 ln(2 · 1

2
) = ln 1 = 0. The

gradient of the function is ~∇f =
“

ln(xy)+1
x/y

”
. At the point (2, 1

2
) this is ~∇f = ( 1

4 ), so the

linear approximation is

f(x, y) ≈ f(2,
1

2
) + 1 · (x− 2) + 4 · (y − 1

2
),

i.e.

f(x, y) ≈ 1(x− 2) + 4(y − 1

2
).

(This is also the answer to problem 29.)
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Here we don’t want to describe the tangent plan, but we want to find the value of f(x, y)
for (x, y) = (1.98, 0.4). Substituting these values of x and y in the linear approximation we
get f(1.98, 0.4) ≈ (1.98− 2) + 4(0.4− 0.5) = −0.42.

This is only an approximation, and you wonder how good it is. We have ∆x = 1.98−2 =
−0.02, and ∆y = 0.4 − 1

2
= −0.1. . . are these numbers “small”? To find the error in the

approximation you could use a Lagrange-type remainder term, but that’s not part of math 234.
Instead we grab a calculator and compute f(1.98, 0.4) = 1.98 · ln(1.98 · 0.4) = −0.46172 · · · .
So our linear approximation formula is off by 0.04 · · · .

(38) ∂(f+g)
∂x

= fx + gx, and ∂(f+g)
∂y

= fy + gy, so0@ ∂(f+g)
∂x

∂(f+g)
∂y

1A =

„
fx + gx
fy + gy

«
=

„
fx
fy

«
+

„
gx
gy

«
Hence ~∇(f + g) = ~∇f + ~∇g.

(39ii) The gradient is ~∇f =
`

2x
8y

´
. This vector is parallel to ( 1

1 ) if there is a number s

such that ~∇f = s ( 1
1 ), i.e.

“
fx
fy

”
= ( ss ). This happens if fx(x, y) = fy(x, y). From our

computation of the partial derivatives of f we find that ~∇f is parallel to ( 1
1 ) when 2x = 8y.

This happens at every point on the line y = 1
4
x.

We are asked which points on the level set f = 4 satisfy this condition, so we must find
where the line y = 1

4
x intersects the level set x2 + 4y2 = 4. Solving the two equations gives

two points ( 4
5

√
5, 1

5

√
5) and (− 4

5

√
5,− 1

5

√
5).

(39iii) ~∇g =
“

4y2

8xy

”
. This is parallel to ( 1

1 ) when y = 2x. This line intersects the level set

g = 4 in the point ( 1
2

3
√

2, 3
√

2).

Note: when you solve the equations ~∇g = ( ss ), you find y = 2x, but also the line y = 0

(x-axis). On this line the gradient actually vanishes, i.e. ~∇g = ~0 and has no direction, so you
can’t really say it is parallel to ( 1

1 ).

(40i) It’s a paraboloid of revolution.

(40ii) ~∇f =
“

2x
2y
−2

”
= s

“
1
1
2

”
if −2 = 2s, i.e. s = −1. This then implies 2x = −1, 2y = −1, so

that x = y = − 1
2

. Since the point has to lie on the zero set of f , we find z = 1
2
(x2 +y2) = 1

4
.

(41) The zero set doesn’t have to be a curve. For example the zero set of the function
f(x, y) =distance from (x, y) to the square Q (Problems 4 and 25) is the whole square Q.

(42) ‖ ~∇f‖ is larger at the top right, because there the function f changes faster.

(47ii) The result of a rather long calculation is that ‖ ~∇f‖ = 1 everywhere outside the square,

and ‖ ~∇f‖ = 0 inside the square (because f is constant in the square.)

(49) ax+ by + cz = R2.

(50) 4xt cos(x2 + y2) + 6yt2 cos(x2 + y2)
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(51) 2xy cos t+ 2x2t

(52) 2xyt cos(st) + 2x2s, 2xys cos(st) + 2x2t

(53) 2xy2t− 4yx2s, 2xy2s+ 4yx2t

(55i) ∂TB
∂Y

= − sinα ∂TA
∂x

+ cosα ∂TA
∂y

.

(55ii) Take the formulas for ∂TB
∂X

and ∂TB
∂Y

and work out the right hand side in this problem.

(58i) ~E = − ~∇ ln r = 1
r2

( xy ).

(58ii) ‖~E‖ = 1/r = 1√
x2+y2

.

(62i) Height = −(x2 − y2)/(x2 + y2)

(62ii) Height = sin 2θ.

(62iii) Height = cos 2ϕ.

(64) fx = 3x2y2, fy = 2x3y + 5y4, fxx = 6xy2, fyy = 2x3 + 20y3, fxy = 6x2y

(65) fx = 12x2 + y2, fy = 2xy, fxx = 24x, fyy = 2x, fxy = 2y

(66) fx = sin y, fy = x cos y, fxx = 0, fyy = −x sin y, fxy = cos y

(72) A function of two variables has

fxx, fxy = fyx, fyy,

so it has three different partial derivatives of second order.

A function of three variables has these partial derivatives:

fxx fxy fxz
fyx fyy fyz
fzx fzy fzz

The ones “below the diagonal” are the same as corresponding derivatives above the diagonal,
so there are only six different partial derivatives of second order, namely these:

fxx fxy fxz
fyy fyz

fzz

A function of two variables has

fxxx,

fxxy = fxyx = fyxx,

fxyy = fyxy = fyyx,

and fyyy

so four different partial derivatives of third order.
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(78) We have g(u, v) = f(u+ v, u− v), so

∂g

∂u
=
∂f

∂x

∂(u+ v)

∂u
+
∂f

∂y

∂(u− v)

∂u
= fx(u+ v, u− v) + fy(u+ v, u− v).

Similarly,
∂g

∂v
= fx(u+ v, u− v)− fy(u+ v, u− v).

Differentiate again to get

∂2g

∂u2
= fxx(u+ v, u− v) + 2fxy(u+ v, u− v) + fyy(u+ v, u− v)

∂2g

∂v2
= fxx(u+ v, u− v)− 2fxy(u+ v, u− v) + fyy(u+ v, u− v)

∂2g

∂u∂v
= fxx(u+ v, u− v)− fyy(u+ v, u− v)

(80i) If y 6= 0 then you can increase x2 − x3 − y2 by setting y = 0. To put it differently, no
matter what you choose for y, you always have

f(x, y) = x2 − x3 − y2 ≤ x2 − x3 = f(x, 0).

(80ii) The maximum has to appear on the x axis, so the question is which x ≥ 0 maximizes
f(x, 0) = x2 − x3?

This is a Math 221 question. The answer is at x = 2/3.

(80iii) No, limx→−∞ f(x, y) = +∞, so f has no largest value.

(81)

1

( 3
4 ,

3
8

√
3)

( 3
4 ,−

3
8

√
3)

The quantity 4(x3−x4) = 4x3(1−x) is negative when
x < 0 or x > 1, so the region is confined to the vertical
strip 0 ≤ x ≤ 1. Within this strip R is comprised of those
points which satisfy −

p
4(x3 − x4) ≤ y ≤ +

p
4(x3 − x4).

The largest x value is attained at the point with x = 1,
where y = 0, so, at the point (1, 0). The smallest x value
is attained at the point (0, 0). The largest y value is at-
tained at the point where y2 = 4x3 − 4x4 is maximal. This
happens when x = 3

4
, and the largest y value is thereforep

4[(3/4)3 − (3/4)4] = 3
8

√
3. The smallest y value also

occurs at x = 3
4

and is given by y = − 3
8

√
3.

(82i) fx = 2x− 2, fy = 8y+ 8, fxx = 2, fxy = 0, fyy = 8.

There is exactly one critical point, at (x, y) = (1,−1).

The 2nd order Taylor expansion at this point is

f(1 + ∆x,−1 + ∆y) = f(1,−1) + (∆x)2 + 4(∆y)2 + · · ·

The quadratic part is positive definite, therefore f has a local minimum at (1,−1).
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(82ii) fx = 2x+ 6, fy = −2y − 10, fxx = 2, fxy = 0, fyy = −2.

There is exactly one critical point, at (x, y) = (−3,−5).

The 2nd order Taylor expansion at this point is

f(−3+∆x,−5+∆y) = f(−3,−5)+(∆x)2−(∆y)2+· · · = f(−3,−5)+
`
∆x−∆y

´`
∆x+∆y

´
+· · ·

The quadratic part factors, therefore f has a saddle point at (−3,−5). The level set near
the critical point consists of two crossing curves whose tangents are given by the equations
∆x = ∆y and ∆x = −∆y. Since ∆x = x − a = x + 3 and ∆y = y − b = y + 5, the two
tangent lines have equations x+ 3 = y + 5 and x+ 3 = −(y + 5).

Critical point and level set
near the critical point.

(82iii) fx = 2x + 4y, fy = 4x + 2y, fxx = 2, fxy = 4, fyy = 2. There is one critical point:
(x, y) = (2,−1).

The 2nd order Taylor expansion at this point is

f(2 + ∆x,−1 + ∆y) = f(2,−1) + (∆x)2 + 4∆x∆x+ (∆y)2 + · · ·

= f(2,−1) +
`
∆x+ 2∆y

´2 − 3(∆y)2 + · · ·
= f(2,−1) +

`
∆x+ (2 +

√
3)∆y

´`
∆x+ (2−

√
3)∆y

´
+ · · ·

The quadratic part factors, therefore f has a saddle point at (2,−1). The level set near
Critical point and level set
near the critical point.

the critical point consists of two crossing curves whose tangents are given by the equations
∆x = (2+

√
3)∆y and ∆x = (2−

√
3)∆y. Since ∆x = x−a = x−2 and ∆y = y−b = y+1,

the two tangent lines have equations x− 2 = (2 +
√

3)(y+ 1) and x− 2 = (2−
√

3)(y+ 1).

(82iv) fx = 2x− y − 5, fy = −x+ 4y + 6, fxx = 2, fxy = −1, fyy = 4.

There is again one critical point: x = 2, y = −1.

The 2nd order Taylor expansion at this point is

f(2 + ∆x,−1 + ∆y) = f(2,−1) + (∆x)2 −∆x∆x+ 2(∆y)2 + · · ·

= f(2,−1) +
`
∆x− 1

2
∆y
´2

+ 7
4
(∆y)2 + · · ·

The second order part of the Taylor expansion is positive, so (2,−1) is a local minimum.

(82v) fx = −36x+ 4x3, fy = 2y, fxx = −36 + 12x2, fxy = 0, fyy = 2.

The equation fx = 0 has three solutions, x = 0 and x = ±3. The equation fy = 0 has
only one solution y = 0. Therefore there are three critical points, the origin and the points
(±3, 0).

The taylor expansions at these points are

f(∆x,∆y) = f(0, 0)− 18(∆x)2 + (∆y)2 + · · ·

= f(0, 0) +
`
∆y −

√
18x
´`

∆y +
√

18x
´

+ · · ·

f(3 + ∆x,∆y) = f(3, 0) + 36(∆x)2 + (∆y)2 + · · ·

f(−3 + ∆x,∆y) = f(−3, 0) + 36(∆x)2 + (∆y)2 + · · ·

The second order terms in the Taylor expansions at (3, 0) and at (−3, 0) are both positive
for all ∆x and ∆y, so both points (±3, 0) are local minima. The second order part of the
expansion at the origin factors and hence the origin is a saddle point. The tangents to the
zeroset at the origin are the lines ∆y = ±

√
18∆x = ±3

√
2∆x. Since here ∆x = “x−a” = x,

and ∆y = y, the tangents are the lines through the origin given by y = ±3
√

2x.

You can try to draw the zeroset of this function and analyze it in the same way as the
“fishy example” in 4.3. The zeroset of f consists of the graphs of y = ±

√
18x2 − x4 =

±|x|
√

18− x2. It looks like a squashed “∞” or a butterfly (you decide.)

-3 3

Critical points and zero set.
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(82vi) There are nine critical points. Four global minima at (±3,±
√

3), four saddle points at

(0,±
√

3) and (±3, 0) respectively, and finally, a local but not global maximum at the origin.

(82vii) critical point at (1,−1/6) fx = 4− 4x, fy = 1− 6y, fxx = −4, fxy = 0, fyy = −6.

Second order Taylor expansion at the critical point:

f(−1 + ∆x,− 1
6

+ ∆y) = f(1,− 1
6
)− 2(∆x)2 − 3(∆y)2 + · · ·

The second order terms are always negative so (1,− 1
6
) is a local maximum.

(82viii) The derivatives are:

fx = 4y−2xy−2y2, fy = 4x−x2−4xy, fxx = −2y, fxy = 4−2x−4y, fyy = −4x.

This function is given in factored form, so without solving the equations fx = 0, fy = 0 you
can say the following about this problem. The zero set consists of the three lines: the y-axis
(x = 0), the x-axis (y = 0) and the line with equation 4 − x − 2y = 0. It follows that the
intersection points (0, 0), (4, 0), and (0, 2) of these lines are saddle points. Since f > 0 in the
triangle formed by the three lines this triangle must contain at least one local maximum.

To find all critical points solve these equations:

fx = 4y − 2xy − 2y2 = 0 ⇐⇒ y = 0 or 4− 2x− 2y = 0

and

fy = 4x− x2 − 4xy = 0 ⇐⇒ x = 0 or 4− x− 4y = 0

Since both equations fx = 0 and fy = 0 lead to two possibilities, we have to consider 2×2 = 4
cases:

y = 0 & x = 0: This tells us the origin is a critical point
y = 0 & 4− x− 4y = 0: Solving these equations leads to x = 4, y = 0, so (4, 0) is a

critical point.
4− 2x− 2y = 0 & x = 0: Solve and you find that (0, 2) is a critical point.
4− 2x− 2y = 0 & 4− x− 4y = 0: Solve these equations and you get (x, y) =

( 4
3
, 2

3
).

The first three critical points are the saddle points we predicted. The fourth critical point
must be a local maximum, since there has to be one in the triangle, and of all the critical
points we have found the others are all saddle points.

(82x) Two saddle points: (2, 2) and (−2,−2)

(82xii) The origin. Neither a local max, min, nor saddle. The graph of this function is called
the “Monkey Saddle” as it accommodates two legs and a tail too. Draw it in your graphing
program to see this.
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(82xiii) Zero set is the parabola with equation x = y2, and the line x = 1. They intersect at
(1,±1), so the function has two saddle points (1, 1) and (1,−1). The region between the line
x = 1 and the parabola must contain local minimum. It is located at ( 1

2
, 0).

(82xiv) Two saddle points : (2, 2) and (−2,−2). Yes, this problem appeared twice.

(82xv) All points on the y-axis are critical points. They are all global minima, but the second
derivative test doesn’t tell you so.

(82xvi) All points on the y-axis are again critical points. Those with y > 0 are local minima,
those with y < 0 are local maxima, and the origin is neither. The second derivative test applies
to none of these points.

(82xvii) All points on the unit circle are global minima, because the function vanishes there,
and is positive everywhere else. The origin is a local maximum. The 2nd derivative test applies
to the origin, but not to any of the other critical points.

(82xviii) All points on the y-axis are again critical points. Those with y > 0 are local minima,
those with y < 0 are local maxima, and the origin is neither. The second derivative test applies
to none of these points.

(86) (3, 4/3)

(87) x = (a+ c+ e)/3, y = (b+ d+ f)/3.

(88) You have to show that fx(a, b) = fy(a, b) = 0. By the product rule fx(a, b) =
gx(a, b)h(a, b) + g(a, b)hx(a, b). Since both g(a, b) = 0 and h(a, b) = 0, it follows that
fx(a, b) = 0. The same reasoning applies to fy(a, b).

(90i) One variable calculus. There’s only one variable, a, and you must solve E′(a) = 0.

(90ii) a = (x1 + · · ·+ xN )/N , i.e. the average provides “the best fit.”

(91i) Three: a, b, and c.

(91ii) The equations for (a, b, c) are:

(
P
x4
k) a + (

P
x3
k) b + (

P
x2
k) c =

P
x2
kyk

(
P
x3
k) a + (

P
x2
k) b + (

P
xk) c =

P
xkyk

(
P
x2
k) a + (

P
xk) b + N c =

P
yk

(92) The equations are

(
P
x2
k) a + (

P
xkyk) b + (

P
xk) c =

P
xkzk

(
P
xkyk) a + (

P
y2
k) b + (

P
yk) c =

P
ykzk

(
P
xk) a + (

P
yk) b + N c =

P
zk

(93) In this problem you are asked to find Taylor expansions of functions at various points.
Since these points are not critical points, the expansions you find will generally have first and
second oder terms. In the expansions you will compute when you use the second derivative
test later on, there will be no first order terms.
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(93i) f(∆x,∆y) =
“

1−∆x+ ∆x∆y
”2

= 1− 2∆x+ ∆x2 + 2∆x∆y + · · ·

(93ii) f(1 + ∆x, 1 + ∆y) =
“

1− (1 + ∆x) + (1 + ∆x)(1 + ∆y)
”2

= 1 + 2∆y + 2∆x∆y +

2(∆y)2 + · · ·

(93iii) f(∆x,∆y) = e∆x−(∆y)2 = 1 + ∆x+ 1
2
(∆x)2 − (∆y)2 + · · ·

(93iv) f(1+∆x, 1+∆y) = e(1+∆x)−(1+∆y)2 = 1+∆x−2∆y+ 1
2
(∆x)2−2∆x∆y+(∆y)2+· · ·

(95) Complete the square and you get

Q(x, y) =
`
x− ay

´2
+
`
1− a2´y2.

When 1− a2 > 0, i.e. when −1 < a < 1 the form is positive definite. When a = ±1 the form
is a perfect square, namely,

x2 ± 2xy + y2 =
`
x± y

´2
.

When 1− a2 < 0, i.e. when a > 1 or a < −1, the form is indefinite:

x2 + 2axy + y2 =
“
x− ay −

p
a2 − 1y

”“
x− ay +

p
a2 − 1y

”
= (x− k+y)(x− k−y),

where k± = −a±
√
a2 − 1.

(96) See the solutions to Problem 82 for the solutions to this problem.

(98i) fx = 2x− 1
2
y2, fy = 2y−xy. The equation fy = y(2−x) = 0 leads to two possibilities:

x = 2 or y = 0. If y = 0 then fx = 0 implies x = 0, which gives us one critical point, the
origin (0, 0). If on the other hand x = 2, then fx = 0 implies y2 = 8 ⇐⇒ y = ±2

√
2. We

therefore get two more critical points (2,±2
√

2).

The second derivatives are fxx = 2, fxy = −y, fyy = 2 − x. Therefore we have the
following Taylor expansions at the three critical points:

f(∆x,∆y) = f(0, 0) + (∆x)2 + (∆y)2 + · · · =⇒ loc.min.

f(2 + ∆x, 2
√

2 + ∆y) = f(2, 2
√

2) + (∆x)2 − 2
√

2∆x∆y + 0(∆y)2 + · · ·

= f(2, 2
√

2) +
`
∆x− 2

√
2∆y

´
∆x+ · · · =⇒ saddle

f(2 + ∆x,−2
√

2 + ∆y) = f(2,−2
√

2) + (∆x)2 + 2
√

2∆x∆y + 0(∆y)2 + · · ·

= f(2,−2
√

2) +
`
∆x+ 2

√
2∆y

´
∆x+ · · · =⇒ saddle

The origin is therefore a local minimum, and the points (2,±2
√

2) are saddle points. At

(0, 2
√

2) the level set consists of two crossing curves, whose tangents are given by ∆x = 0 (a

vertical line) and ∆x = 2
√

2∆y (a line with slope 1/2
√

2 = 1
4

√
2).

(98iii) fx = 1 − y2, fy = 2 − 2xy. Critical points: fx = 0 holds when y = ±1. If y = +1,
then fy = 0 implies x = 1, and if y = −1 then fy = 0 implies x = −1. There are therefore
two critical points, (1, 1) and (−1,−1).
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(101) f(x, y) = xy, g(x, y) = x2 + 1
4
y2. ~∇f = ( yx ), ~∇g =

`
2x
y/2

´
.

First we check for possible max/minima which satisfy ~∇g = ~0. But the only point (x, y)

satisfying ~∇g(x, y) = ( 0
0 ) is the origin (x, y) = (0, 0), and this point does not lie on the

constraint set.

Therefore, if there is a minimum it is attained at a solution of Lagrange’s equations

fx = λgx ⇐⇒ y = 2λx

fy = λgy ⇐⇒ x = λy/2

g(x, y) = 1 ⇐⇒ x2 + 1
4
y2 = 1

Multiply the first equation with y and the second with 4x, then you get

y2 = 2λxy and 4x2 = 2λxy

Hence y2 = 4x2. Put that in the constraint, and you find

1 = x2 + 1
4
y2 = 2x2.

Thus x = ±
p

1/2 = ± 1
2

√
2 and y = ±

√
2. In all we have found four possible solutions.

Lagrange’s method does not tell us which, if any, of these are minima.

AB

C D

Level sets of the function
f(x, y) = xy and the con-

straint set x2 + 1
4y

2 = 1

By looking at the constraint set (it’s an ellipse with horizontal axis of length 1 and vertical
axis of length 2) and taking into account that f(x, y) = xy is positive in the first and third

quadrants, and negative in the second and fourth, you find out that the two points ( 1
2

√
2,
√

2)

and (− 1
2

√
2,−
√

2) (A and C in the figure) are maximum points, while (− 1
2

√
2,
√

2) and

( 1
2

√
2,−
√

2) (B and D in the figure) are minimum points.

(102i) Let the sides of the box be x, y, z. We want to minimize the quantity A = 2xy+2yz+
2xz, with the constraint V = xyz = 1

2
. The constraint implies that x 6= 0, y 6= 0 and z 6= 0

moreover, given x and y the only z which satisfies the constraint is z = 1/(2xy). Thus we
must minimize the following function of two variables

A(x, y) = xy +
1

2x
+

1

2y

over all x > 0, y > 0.

A minimum must be an interior minimum (can’t be on the x or y-axis since these are
excluded), and thus must be a critical point.

∂A

∂x
= y − 1

2x2
,

∂A

∂y
= x− 1

2y2
.

Solving Ax = Ay = 0 for (x, y) leads to x = y = 3
√

2, so the solution is a cube 1/ 3
√

2 on a
side

(102ii) We wish to minimize A(x, y, z) = 2yz+2xz+2xy with constraint V (x, y, z) = xyz =
1
2

, using Lagrange’s method.

First we check for exceptional points on the constraint set, i.e. points (x, y, z) that satisfy

both V (x, y, z) = 1
2

and ~∇V (x, y, z) = ~0. Since

~∇V =

0@yzxz
xy

1A
the gradient ~∇V vanishes if at least two of the three coordinates x, y, z are zero. But such a
point can never satisfy the constraint xyz = 1

2
. Therefore, if there is a box with least area,

its sides x, y, z must satisfy Lagrange’s equations.
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Lagrange’s equations are

Ax = λVx ⇐⇒ 2y + 2z = λyz

Ay = λVy ⇐⇒ 2x+ 2z = λxz

Az = λVz ⇐⇒ 2x+ 2y = λxy

To get rid of λ multiply the first equation with x and the second with y to get

y(2x+ 2z) = λxyz = x(2y + 2z) =⇒ 2xy + 2yz = 2xy + 2xz =⇒ 2yz = 2xz.

Therefore we find that either z = 0 or x = y. But z = 0 is not possible, because (x, y, z)
must satisfy the constraint xyz = 0. Therefore we get x = y.

If you multiply the second Lagrange equation with y and the third with z then the same
reasoning as above tells you that y = z.

So, if there is a minimum then it happens when x = y = z, i.e. when the box is a cube.
The only cube that satisfies the constraint has sides x = y = z = 2−1/3.

As always, Lagrange’s method does not rule out the possibility that the cube we have
found actually maximizes the surface area, rather than minimizing it. That this is actually not
the case is something you would have to prove by other means. We will not do that in this
course.

(103) Answer: the shortest distance is
p

100/3.

Solution: If (x, y, z) is any point than its distance to the origin is d(x, y, z) =p
x2 + y2 + z2. We want to minimize d(x, y, z) over all points (x, y, z) which satisfy the

constraint g(x, y, z) = x + y + z = 10. Instead of minimizing d(x, y, z) we will minimize
f(x, y, z) = d(x, y, z)2 = x2 + y2 + z2. You can do this problem directly with the function
d(x, y, z) and you will get the same answer – the computations are just a little longer because
f has easier derivatives than d.

We use Lagrange’s method. First we check for exceptional points, i.e. points on the

constraint set which satisfy ~∇g = ~0. Since ~∇g =
“

1
1
1

”
the gradient of g can never be the

zero vector, so there are no exceptional points. If there is a minimum of f on the constraint
set, it must be a solution of Lagrange’s equations.

The Lagrange equations are

fx = λgx ⇐⇒ 2x = λ

fy = λgy ⇐⇒ 2y = λ

fz = λgz ⇐⇒ 2z = λ

Therefore if there is a nearest point to the origin on the plane then it must satisfy x = y =
z = λ/2 as well as the constraint. The only point satisfying these conditions is ( 10

3
, 10

3
, 10

3
).

Lagrange’s method does not tell us that this is the nearest point. As far as Lagrange is
concerned it could also be the furthest point from the origin. (But because we know what a
plane looks like we “know” that there has to be a nearest point to the origin.)

(105i) Minimize f(x, y, z) = (x−2)2+(y−1)2+(z−4)2 subject to the constraint g(x, y, z) =
2x− y + 3z = 1.

First, since ~∇g −
“

2
−1
3

”
6= ~0, there are no exceptional points, so the nearest point (if it

exists) is a solution of Lagrange’s equations. These are

2(x− 2) = 2λ, 2(y − 1) = −λ, 2(z − 4) = 3λ.

Eliminate λ to get

x = −2y + 4, z = −3y + 7.
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Combined with the constraint you then find

y = 2, x = 0, z = 1.

The Lagrange multiplier is λ = x− 2 = −2.

The distance from the point we found to the given point (2, 1, 4) is

d =
p

(x− 2)2 + (y − 1)2 + (z − 4)2 =
√

14

(105ii) |ax0 + by0 + cz0 − d|/
√
a2 + b2 + c2

(108) a cube

(110) 65/3× 65/3× 130/3

(111) It has a square base, and is one and one half times as tall as wide. If the volume is V

the dimensions are 3
p

2V/3× 3
p

2V/3× 3
p

9V/4.

(112) (0, 0, 1), (0, 0,−1)

(113) 3
√

4V × 3
√

4V × 3
p
V/16

(114) Farthest: (−
√

2,
√

2, 2 + 2
√

2); closest: (2, 0, 0), (0,−2, 0)

(115i) 2

(115ii) 8

(115iii) 2/3

(115iv)

Z π

0

Z y

0

sin y

y
dx dy =

Z π

0

sin y

y
· y dy =

Z π

0

sin y dy = 2.

(115v) Except for a change in notation (y → θ and x→ r) this is the same integral as in the
previous problem. The answer is again 2.

(115vi) Which function is being integrated? It’s the function f(x, y) = 1.R 1

0

R√1−x2

0
dy dx =

R 1

0

ˆ
y
˜y=
√

1−x2

y=0
dx =

R 1

0

√
1− x2 dx. The last integral is the area of a

quarter circle with radius 1, so the answer is π/4.

(116) Once you compute the inner integralZ 1

0

sin(πx)dx = [− cosπx]1x=0 = − cosπ − (− cos 0) = 2,

you get Z 1

x

nZ 1

0

sin(πx)dx
o
dy =

Z 1

x

2dy = [2y]1y=x = 2(1− x).

The result depends on x. The x in the answer and the two x-es in the inner integral refer to
different quantities. This is at best confusing, and should really never be done.

(117) This is almost true, but in fact false. The correct statement which looks like the one in
the problem is
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For any two functions f(x) and g(y) one hasZ 1

0

Z 2

0

f(x)g(y) dx dy =

Z 2

0

f(x) dx ×
Z 1

0

g(y) dy .

(what’s the difference? Look at the integration bounds!) To give a counterexample for the
statement in the problem, almost any two functions f and g will do, as long as f is not a
constant multiple of g. For instance, if you choose f(x) = x, g(y) = 1, then you getZ 1

0

Z 2

0

f(x)g(y) dx dy =

Z 1

0

Z 2

0

xdxdy = 2.

but Z 1

0

f(x) dx ×
Z 2

0

g(y) dy =

Z 1

0

x dx ×
Z 2

0

dy =
1

2
× 2 = 1.

(118) The volume under the graph is 1
3
ba3 + 1

3
ab3 = 1

3
ab(a2 + b2). The volume of the

surrounding block is a× b× (a2 + b2), so the region beneath the graph occupies one third of
the surrounding block, no matter which a or b you choose.

(119i) 16

(119ii) 4

(119iii) 15/8

(119iv) 1/2

(119v) 5/6

(119vi) 12− 65/(2e).

(119vii) 1/2

(119viii) (2/9)23/2 − (2/9)

(119ix) (1− cos(1))/4

(119x) (2
√

2− 1)/6

(119xi) π − 2

(120i) 8π

(120ii) 2

(120iii) 5/3

(120iv) 81/2

(120v) 2a3/3

(120vi) 4π
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(120vii) π/32

(122i) A

(122ii) B/2

(123i)

Z 1

0

Z √1−x2

0

2xy

x2 + y2
dy dx.

(123ii) In P.C. the function simplifies to F (r, θ) = 2 sin θ cos θ, so the volume is

V =

Z 1

0

Z π/2

0

2 sin θ cos θr dθ dr =

Z 1

0

ˆ
sin2 θ

˜π/2
0

r dr = 1
2
.
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Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a man-
ual, textbook, or other functional and useful document
“free” in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or
without modifying it, either commercially or noncom-
mercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work,
while not being considered responsible for modifica-
tions made by others.

This License is a kind of “copyleft”, which means
that derivative works of the document must themselves
be free in the same sense. It complements the GNU
General Public License, which is a copyleft license de-
signed for free software.

We have designed this License in order to use
it for manuals for free software, because free software
needs free documentation: a free program should come
with manuals providing the same freedoms that the
software does. But this License is not limited to soft-
ware manuals; it can be used for any textual work,
regardless of subject matter or whether it is published
as a printed book. We recommend this License princi-
pally for works whose purpose is instruction or refer-
ence.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other
work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed un-
der the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein.
The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring
permission under copyright law.

A “Modified Version” of the Document means
any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or
a front-matter section of the Document that deals ex-
clusively with the relationship of the publishers or au-
thors of the Document to the Document’s overall sub-
ject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus,
if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathemat-
ics.) The relationship could be a matter of historical
connection with the subject or with related matters, or
of legal, commercial, philosophical, ethical or political
position regarding them.

The “Invariant Sections” are certain Sec-
ondary Sections whose titles are designated, as be-
ing those of Invariant Sections, in the notice that says
that the Document is released under this License. If a
section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If
the Document does not identify any Invariant Sections
then there are none.

The “Cover Texts” are certain short passages
of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document
is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A “Transparent” copy of the Document means
a machine-readable copy, represented in a format
whose specification is available to the general public,
that is suitable for revising the document straightfor-
wardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for draw-
ings) some widely available drawing editor, and that
is suitable for input to text formatters or for auto-
matic translation to a variety of formats suitable for
input to text formatters. A copy made in an other-
wise Transparent file format whose markup, or absence
of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transpar-
ent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent
copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or
XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent im-
age formats include PNG, XCF and JPG. Opaque for-
mats include proprietary formats that can be read
and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book,
the title page itself, plus such following pages as are
needed to hold, legibly, the material this License re-
quires to appear in the title page. For works in formats
which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of
the work’s title, preceding the beginning of the body
of the text.

The “publisher” means any person or entity
that distributes copies of the Document to the pub-
lic.

A section “Entitled XYZ” means a named
subunit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned be-
low, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Docu-
ment means that it remains a section “Entitled XYZ”
according to this definition.

The Document may include Warranty Dis-
claimers next to the notice which states that this Li-
cense applies to the Document. These Warranty Dis-
claimers are considered to be included by reference
in this License, but only as regards disclaiming war-
ranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the
meaning of this License.
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2. VERBATIM COPYING

You may copy and distribute the Document in
any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and
the license notice saying this License applies to the
Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this Li-
cense. You may not use technical measures to obstruct
or control the reading or further copying of the copies
you make or distribute. However, you may accept com-
pensation in exchange for copies. If you distribute a
large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same con-
ditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in me-
dia that commonly have printed covers) of the Docu-
ment, numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly,
all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present
the full title with all words of the title equally promi-
nent and visible. You may add other material on the
covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too vo-
luminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of
the Document numbering more than 100, you must
either include a machine-readable Transparent copy
along with each Opaque copy, or state in or with
each Opaque copy a computer-network location from
which the general network-using public has access to
download using public-standard network protocols a
complete Transparent copy of the Document, free of
added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distri-
bution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at
the stated location until at least one year after the
last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you con-
tact the authors of the Document well before redis-
tributing any large number of copies, to give them a
chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version
of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Ver-
sion under precisely this License, with the Modified
Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the cov-
ers, if any) a title distinct from that of
the Document, and from those of previ-
ous versions (which should, if there were
any, be listed in the History section of the
Document). You may use the same title
as a previous version if the original pub-
lisher of that version gives permission.

B. List on the Title Page, as authors, one
or more persons or entities responsible
for authorship of the modifications in the
Modified Version, together with at least
five of the principal authors of the Doc-
ument (all of its principal authors, if it
has fewer than five), unless they release
you from this requirement.

C. State on the Title page the name of the
publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the
Document.

E. Add an appropriate copyright notice for
your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright
notices, a license notice giving the pub-
lic permission to use the Modified Ver-
sion under the terms of this License, in
the form shown in the Addendum below.

G. Preserve in that license notice the full
lists of Invariant Sections and required
Cover Texts given in the Document’s li-
cense notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”,

Preserve its Title, and add to it an item
stating at least the title, year, new au-
thors, and publisher of the Modified Ver-
sion as given on the Title Page. If there is
no section Entitled “History” in the Doc-
ument, create one stating the title, year,
authors, and publisher of the Document
as given on its Title Page, then add an
item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any,
given in the Document for public access
to a Transparent copy of the Document,
and likewise the network locations given
in the Document for previous versions it
was based on. These may be placed in
the “History” section. You may omit a
network location for a work that was pub-
lished at least four years before the Docu-
ment itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledge-
ments” or “Dedications”, Preserve the
Title of the section, and preserve in
the section all the substance and tone
of each of the contributor acknowledge-
ments and/or dedications given therein.

L. Preserve all the Invariant Sections of the
Document, unaltered in their text and
in their titles. Section numbers or the
equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorse-
ments”. Such a section may not be in-
cluded in the Modified Version.

N. Do not retitle any existing section to be
Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-
matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from
the Document, you may at your option designate some
or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the Mod-
ified Version’s license notice. These titles must be dis-
tinct from any other section titles.

You may add a section Entitled “Endorsements”,
provided it contains nothing but endorsements of your
Modified Version by various parties—for example,
statements of peer review or that the text has been
approved by an organization as the authoritative def-
inition of a standard.

You may add a passage of up to five words as a
Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts
in the Modified Version. Only one passage of Front-
Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity.
If the Document already includes a cover text for the
same cover, previously added by you or by arrange-
ment made by the same entity you are acting on be-
half of, you may not add another; but you may replace
the old one, on explicit permission from the previous
publisher that added the old one.

The author(s) and publisher(s) of the Document
do not by this License give permission to use their
names for publicity for or to assert or imply endorse-
ment of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other doc-
uments released under this License, under the terms
defined in section 4 above for modified versions, pro-
vided that you include in the combination all of the
Invariant Sections of all of the original documents, un-
modified, and list them all as Invariant Sections of
your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.
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The combined work need only contain one copy
of this License, and multiple identical Invariant Sec-
tions may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but
different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that sec-
tion if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sec-
tions Entitled “History” in the various original docu-
ments, forming one section Entitled “History”; like-
wise combine any sections Entitled “Acknowledge-
ments”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Doc-
ument and other documents released under this Li-
cense, and replace the individual copies of this License
in the various documents with a single copy that is in-
cluded in the collection, provided that you follow the
rules of this License for verbatim copying of each of
the documents in all other respects.

You may extract a single document from such a
collection, and distribute it individually under this Li-
cense, provided you insert a copy of this License into
the extracted document, and follow this License in all
other respects regarding verbatim copying of that doc-
ument.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its deriva-
tives with other separate and independent documents
or works, in or on a volume of a storage or distribu-
tion medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the
individual works permit. When the Document is in-
cluded in an aggregate, this License does not apply to
the other works in the aggregate which are not them-
selves derivative works of the Document.

If the Cover Text requirement of section 3 is ap-
plicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on cov-
ers that bracket the Document within the aggregate,
or the electronic equivalent of covers if the Document
is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modifica-
tion, so you may distribute translations of the Doc-
ument under the terms of section 4. Replacing Invari-
ant Sections with translations requires special permis-
sion from their copyright holders, but you may include
translations of some or all Invariant Sections in addi-
tion to the original versions of these Invariant Sections.
You may include a translation of this License, and all
the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the orig-
inal English version of this License and the original
versions of those notices and disclaimers. In case of a
disagreement between the translation and the original
version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Ac-
knowledgements”, “Dedications”, or “History”, the re-
quirement (section 4) to Preserve its Title (section 1)
will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distrib-
ute the Document except as expressly provided under
this License. Any attempt otherwise to copy, modify,
sublicense, or distribute it is void, and will automati-
cally terminate your rights under this License.

However, if you cease all violation of this Li-
cense, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and un-
til the copyright holder explicitly and finally termi-
nates your license, and (b) permanently, if the copy-
right holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copy-
right holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable
means, this is the first time you have received notice
of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to
30 days after your receipt of the notice.

Termination of your rights under this section
does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If
your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new,
revised versions of the GNU Free Documentation Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distin-
guishing version number. If the Document specifies
that a particular numbered version of this License “or
any later version” applies to it, you have the option
of following the terms and conditions either of that
specified version or of any later version that has been
published (not as a draft) by the Free Software Foun-
dation. If the Document does not specify a version
number of this License, you may choose any version
ever published (not as a draft) by the Free Software
Foundation. If the Document specifies that a proxy
can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of
a version permanently authorizes you to choose that
version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or
“MMC Site”) means any World Wide Web server that
publishes copyrightable works and also provides promi-
nent facilities for anybody to edit those works. A pub-
lic wiki that anybody can edit is an example of such
a server. A “Massive Multiauthor Collaboration” (or
“MMC”) contained in the site means any set of copy-
rightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons
Attribution-Share Alike 3.0 license published by Cre-
ative Commons Corporation, a not-for-profit corpora-
tion with a principal place of business in San Fran-
cisco, California, as well as future copyleft versions of
that license published by that same organization.

“Incorporate” means to publish or republish a
Document, in whole or in part, as part of another Doc-
ument.

An MMC is “eligible for relicensing” if it is li-
censed under this License, and if all works that were
first published under this License somewhere other
than this MMC, and subsequently incorporated in
whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated
prior to November 1, 2008.

The operator of an MMC Site may republish an
MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, provided
the MMC is eligible for relicensing.
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