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1 Course overview

The purpose of this course is to generalize math 221
(single-variable calculus) to multiple variables.

Calculus is the study of things that are smooth.
Smooth means locally flat. The study of things that
are flat is called Linear Algebra. Calculus and
linear algebra are the two foundational subjects for
science, engineering, and most of the rest of mathe-
matics (e.g. differential equations, probability, statis-
tics).

This course covers Chapters 13 through 16 of the
text:

1. Chapter 13 covers the calculus of curves, i.e.
smooth functions from R to R2 or R3. We rep-
resent a typical such function as r(t) = x(t)i +

y(t)j + z(t)k =

x(t)
y(t)
z(t)

. We think of t as time

and r(t) as position in space.

2. Chapter 14 covers the differential calculus of
functions from Rn to R. We represent a typical
function from R2 to R by f(x, y). The graph of
such a function f is a surface. We will use par-
tial derivatives (where we differentiate f with
respect to one variable while holding the other
variable(s) constant) to find the tangent plane
at a given point on a surface.

3. Chapter 15 covers the integral calculus of
functions from Rn to R. For example, we might
want to find the volume under a surface f(x, y)
over a region in the x–y plane, or the total mass
within a 3-dimensional region.

4. Chapter 16 covers the differential and integral
calculus of vector fields, i.e. smooth functions

from Rn to Rn. We represent a typical such
function by F(r). (Usually we just write F with
the understanding that it is a function of space
r.)

2 Notes on Chapter 12

2.1 Vectors

2.1.1 Points versus Vectors

In this course we will study points and vectors in 2-
and 3-dimensional space. It is important to under-
stand the distinction between a point and a vector.

A point is a position in space. Mathematically we
represent a point using its coordinates in a coordi-
nate system. The text usually uses capital letters
to represent points. The text denotes a point in a
Cartesian coordinate system using three coordinates
in parentheses. To name the coordinate variables, we
usually use either numerical subscripts or successive
letters of the alphabet. For example: P = (x, y, z),
or U = (u1, u2, u3).

A vector is an “arrow”: it has a magnitude and a
direction. Two vectors are the same if they have the
same length and direction, even if their tails are an-
chored at different base points. To represent a vector
in a Cartesian coordinate system we place its tail at
the origin and record the position of its head. The
text tends to use bold lower case letters to stand for
vectors; it represents a vector in a Cartesian coordi-
nate system using three coordinates in angle brack-
ets. For example: r = 〈x, y, z〉, or u = 〈u1, u2, u3〉.

You can perform arithmetic on vectors and points as
follows. It does not make sense to add two points.
But you can take the difference of two points P and
Q, and the result is a vector v = P −Q. This vector
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represents the displacement from P to Q. If you add
a vector to a point, you get another point, and if you
add a vector to a vector you get another vector. For
example: Let v = P − Q. Let u = Q − R. Let
w = u + v. Then P = Q + v and Q = R + u, so
P = R+ u + v = R+ w.

In these notes we identify every point P with the
vector p that points from the origin O to P . This
allows us to blur the distinction between vectors and
points.

2.1.2 Multiplication by a Scalar

To multiply a vector u by a scalar t, multiply each
component by the scalar:

tu = t〈u1, u2, u3〉 := 〈tu1, tu2, tu3〉.

(Note that “A = B” simply means that A and B
are equal, whereas when we write “A := B” we are
saying that A is defined to be B.) This rescales the
length of u by a factor of t. If t is positive the direc-
tion remains the same; if t is negative the direction
is reversed.

2.1.3 Dot Product

The dot product takes two vectors and gives you a
scalar (i.e. a number). It is also called the scalar
product. The dot product has an algebraic defi-
nition and a geometric definition. Algebraically the
dot product of two vectors is the sum of the products
of the corresponding components:

u · v := u1v1 + u2v2 + u3v3.

From this definition you can easily show that the
dot product obeys distributive, commutative, and
associative laws:

property identity
commutativity u · v = v · u
distributivity u · (v + w) = u · v + u ·w
scalar associativity t(u · v) = (tu) · v

You probably have seen “·” used to denote multipli-
cation by a scalar. This should not cause confusion,
since the dot product of two scalars is their scalar
product.

2.1.4 Norms

The length of a vector is called its magnitude or
norm. The magnitude of a vector v is denoted |v|,
using absolute value symbols. This should not cause
confusion, because for one-dimensional vectors the
norm is the absolute value. But to be extra clear,
we often use two bars for the norm and one bar for
the absolute value. For example:

‖tv‖ = |t| · ‖v‖.

You can apply the Pythagorean theorem to a couple
right triangles to show that the square of the length
of a vector is the sum of the squares of its compo-
nents:

‖u‖2 = u · u = u2
1 + u2

2 + u2
3,

where ‖u‖ denotes the length of the vector u.

2.1.5 Unit direction vectors

If we scale a vector by the reciprocal of its magnitude
we will get a vector of length 1 called the unit di-
rection vector. We often denote a direction vector
by putting a hat over it. So we will write:

û :=
u
‖u‖

.

Observe that indeed ‖û‖2 = û · û = u·u
‖u‖2 = 1.

Three special unit vectors are the unit vectors along
the principle axes (in the positive direction). These
vectors are called the standard basis vectors. Dif-
ferent people give them different names:

ê1 := x̂ := î := i := 〈1, 0, 0〉,

ê2 := ŷ := ĵ := j := 〈0, 1, 0〉,

ê3 := ẑ := k̂ := k:= 〈0, 0, 1〉.

The book uses i, j, and k.

2.1.6 Geometric definition of dot product
(Law of Cosines)

If you anchor the tails of two vectors u and v at the
origin, they span an angle θ and a triangle with sides
of length ‖u‖, ‖v‖, and ‖v − u‖. If you apply the
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law of cosines to the side of this triangle and simplify,
you get the law of cosines for vectors, also known as
the geometric definition of the dot product:

u · v = ‖u‖ · ‖v‖ cos θ .

This says that the dot product of two vectors is the
product of the lengths times the cosine of the angle
between them. The geometric definition reveals the
most important property of the dot product:

Two nonzero vectors are perpendicular if
and only if their dot product is zero.

2.1.7 Orthogonal decomposition and projec-
tion.

Given two vectors u and v, we can use the dot prod-
uct to write v as the sum of a vector v‖ = tu parallel
to u and a vector v⊥ perpendicular to u:

v = tu + v⊥.

To find t dot this equation with u and solve for t.
Since v⊥ ·u = 0, t = v·u

u·u . The vector v‖ is called the
projection onto u of v, which the book denotes as
pruv. So:

pruv :=
v · u
u · u

u = (v · û)û = prbuv.

2.2 Physical meaning and application of
dot product

Recall that u · v = ‖u‖(‖v‖ cos θ). Since ‖v‖ cos θ
is the length of the projection of v onto u, the geo-
metric definition of the dot product says:

The dot product of u and v is the length
of u times the length of the projection of v
onto u.

An important application is the definition of work.
If a force F is applied to move an object through a
displacement dx, the amount of work dW is:

dW = F · dx,

i.e.,

The work performed when a force F is ap-
plied over a displacement dx is the magni-
tude of the displacement times the magni-
tude of the component of the force in the
direction of the displacement, which is the
same as the magnitude of the force times
the magnitude of the component of the dis-
placement in the direction of the force.

2.2.1 Cross Product

In general, the cross product takes two vectors and
gives a vector perpendicular to both of them.

Let u and v be two vectors. Geometrically the cross
product w = u × v is defined to satisfy three prop-
erties:

1. w is perpendicular to u and v; more precisely,
w · u = 0 and w · v = 0,

2. the length of w is the area of the parallelogram
spanned by u and v; i.e., ‖w‖ = ‖u‖ · ‖v‖ sin θ,
where θ is the angle between u and v, and

3. the ordered triple u,v,w has the same (conven-
tionally right-handed) orientation as the stan-
dard basis vectors i, j,k.

Algebraically the cross product w = u×v is defined
by

w1 := u2v3 − u3v2,

w2 := u3v1 − u1v3,

w3 := u1v2 − u2v1.

(You only need to remember the formula for one of
the components. To get the other two formulas, you
can just cycle the components using mod-3 cyclical
arithmetic, where 4=1, 5=2, 6=3, etc.) You can
easily verify that w · u = 0 and w · v = 0.

The cross product has the following properties:

property identity
anticommutativity u× v = −v × u
distributivity u× (v + w) = u× v + u×w
scalar associativity t(u× v) = (tu)× v

Note that it is not true in general that (u×v)×w =
u×(v×w), i.e., the cross product is not associative.
(Try it out with the standard basis vectors.)
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2.3 Lines

A line is determined by a point r0 on the line and
a vector u in the direction of the line. A generic
point r is on the line if r− r0 is parallel to u, i.e., if
there exists a scalar t such that r− r0 = tu. Solving
for r gives an equation for the line in terms of the
parameter t:

r(t) = r0 + tu.

Written out in components, this is:

x = x0 + tu1,

y = y0 + tu2,

z = z0 + tu3.

To eliminate the parameter t and get a system of
equations in x, y, and z we solve each equation for
t:

t =
x− x0

u1
=
y − y0

u2
=
z − z0
u3

.

This is a system of two independent equations in
three unknowns. The graph of each equation is a
plane. Their intersection is our line. Note that this
system is not uniquely determined, since we could
rescale u or choose a different point r0 on the line.

2.4 Planes

A plane is determined by a point r0 on the plane and
a vector n = (A,B,C) perpendicular to the plane.
The condition for a generic point r to be on the
plane is that the difference vector r− r0 must lie in
the plane, i.e., it must be perpendicular to n:

(r− r0) · n = 0, i.e.,
r · n− r0 · n = 0, i.e.,

r · n = r0 · n.

This says that any two vectors in the plane have the
same dot product D with n. Written out in compo-
nents this reads

Ax+By + Cz = D.

Observe that you can read off the coefficients of x,
y, and z to get the components of the normal vector.

2.5 Exercises

The following exercises should serve as a quick check
on your understanding of the most important skills
and concepts of chapter 12:

1. Write the vector v = 〈2,−3, 4〉 as the sum of
vectors parallel and perpendicular to the vector
u = 〈3,−4, 12〉. Check your answer.

2. Find parametric and symmetric equations
for the line through the points P =
(−1, 3,−2), Q = (1, 2, 4). (Hint: the difference
of two different points in a line is a vector in the
direction of the line.) Check that both points
are on the line.

3. Find the equation of the plane through the
three points P = (−1, 3,−2), Q = (1, 2, 4), R =
(0, 4, 5). (Hint: find two nonparallel vectors
that lie in the plane and take their cross prod-
uct to get a vector perpendicular to the plane.)
Check that all three points satisfy the equation
of the plane.

2.6 Quadratics

By rotation, shifting, and rescaling of axes, every
nondegenerate quadratic in three variables (i.e. any
expression of the form A11x

2 + A22y
2 + A33z

2 +
2A12xy+2A13xz+2A23yz+B1x+B2y+B3z+F = 0)
can be put in one of the following forms:

Form Type of Quadric Surface
x2 + y2 + z2 = 1 ellipsoid
x2 + y2 − z2 = 1 hyperboloid of one sheet
−x2 − y2 + z2 = 1 hyperboloid of two sheets
x2 + y2 − z = 0 elliptic paraboloid
x2 − y2 − z = 0 hyperbolic paraboloid
x2 + y2 − z2 = 0 cone
x2 + y2 = 1 elliptic cylinder
x2 − y2 = 1 hyperbolic cylinder
x2 + y = 0 parabolic cylinder.

To understand the graphs of equations that involve
the sum of two squares, recall that in cylindrical
coordinates r2 = a2 + b2 and graph z versus r.
The hyperbolic paraboloid looks like a saddle. To
see this it helps to look at slices. See section 12.6
and http://en.wikipedia.org/wiki/Quadratic_
surface for more details.
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3 Notes on Chapter 13

Definitions:

• A dot over a letter means the derivative with
respect to t (“time”).
• r(t) = position as a function of time
• v := ṙ = velocity
• a := v̇ = r̈ = acceleration
• s is distance along the curve (measured from

some reference point.
• ṡ := ds

dt = |v| is the speed.
• T̂ := dr

ds = dr
dt
dt
ds = v

|v| is the unit tanget vector.

• ~κ := dT̂
ds is the curvature vector

• κ = |~κ| is the curvature.
• N̂ := ~κ

|~κ| is the unit normal vector (i.e. the di-
rection of the curvature vector)

Quantities that are defined in terms of the arc length,
such as the unit tangent and the curvature, do not
depend on the speed of the parametrization, but only
on its physical shape.

Definition 3.1 (Arc length). Since speed is the
time-derivative of arc length, arc length is the in-
tegral of speed:

L =
∫ s1

s0

ds =
∫ t1

t0

ds

dt
dt

L =
∫ t1

t0

|r′(t)|dt

Problem 3.1. Given r,v,a, find T̂, ~κ.

Solution.

v = T̂ṡ.

So differentiating with respect to time,

a =
dT̂
ds

ds

dt
ṡ+ T̂s̈

= ~κṡ2︸︷︷︸
aN

+ T̂s̈︸︷︷︸
aT

By parametrizing a circle one can easily show that
the curvature is the reciprocal of the radius R of the
circle. So aN = ṡ2|κ| = |v|2/R, a familiar formula
from physics.

The tangential component of the acceleration is just
its projection onto the velocity vector v:

|aT | = a · T̂, aT = |aT |T̂.

The normal component is then

aN = a− aT , |aN |2 = |a|2 − |aT |2,

The curvature is then

~κ =
aN
|v|2

, |~κ| = |aN |
|v|2

.

There is a shortcut to find the magnitude of the cur-
vature:

|aN | = |aN × T̂| = |(aN + aT )× T̂|,

so

|~κ| = |a× v|
|v|3

.

4 Notes on Chapter 14

This section deals with smooth real-valued functions
of multiple variables, e.g. f(x, y).

4.1 Partial derivatives

The partial derivative of a function f(x, y, z) with
respect to x is just the ordinary derivative with re-
spect to x holding the other variables constant. It
is the rate of change of f as you move along the x
axis. It is denoted ∂f

∂x , Dxf , or fx.

Remark 4.1 (Notation for partial derivatives). The
notation for partial derivatives is problematic. When
you take a partial derivative, you must be very clear
what function and what argument you are talking
about. ∂f

∂x means “the partial derivative of f with
respect to the formal argument named x holding the
other arguments constant”. The problem comes in
when you take the derivative of an expression, where
the function is not explicitly defined. Then you need
to be clear “which arguments you are holding con-
stant”, i.e., which function you are talking about.
Here is an example of ambiguity that arises when
you are doing implicit partial differentiation: Does
∂f(x,y,z(x,y))

∂x mean

∂

∂x

[
(x, y) 7→ F (x, y, z(x, y))

]∣∣∣∣
(x,y)

=: F (x, y, z(x, y))x
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or

∂

∂x

[
(x, y, z) 7→ F (x, y, z)

]∣∣∣∣
(x,y,z(x,y))

=: Fx(x, y, z(x, y))?

The problem is that our notation for function eval-
uation is ambiguous and uses the letter x to refer
to two different things: (1) the first argument of the
function f and (2) the first coordinate of the point
where we are evaluating our partial derivative. One
way to deal with this would be to rename the argu-
ments of f as (u, v, w). Another way is to use the
notation Dn, the partial derivative with respect to the
nth argument.

4.2 Linear approximation

A function is smooth (i.e. differentiable) if you can
approximate it by a linear function.

Proposition 4.2 (Linear approximation). Near
(x0, y0), f(x, y) u L(x, y), where the linear approxi-
mation L(x, y) is given by

L(x, y) := f(x0, y0) + (x− x0)
∂f

∂x

∣∣∣
(x0,y0)

+ (y − y0)
∂f

∂y

∣∣∣
(x0,y0)

This should seem intuitively clear to you. It says
that when you move from (x0, y0) to (x, y), the
change in f is approximately the rate at which f
changes as you move along the x axis times the
change in x plus the rate at which f changes as you
move along the y axis times the change in y.

The language of differentials is designed to make
this clear. A small change in x and y is denoted by
the “differentials” dx := x−x0 and dy := y−y0 and
the resulting small change in f is approximated by
the “differential” df .

Definition 4.3 (Differential).

f(x, y)− f(x0, y0) ≈ df, where

df := dx
∂f

∂x

∣∣∣
(x0,y0)

+ dy
∂f

∂y

∣∣∣
(x0,y0)

Remark: L(x, y) = f(x0, y0) + df .

In my opinion, the best way to make sure that you
understand a calculus relationship is to see what it

tells you in the linear case. That is, if you want
to understand why a rule is true, try it out on a
linear function. So take a linear function f(x, y) =
Ax + By + C and plug it into the equations above.
These approximate equalities should become exact
equalities.

The formal definition of differentiability basically
says that the error of the linear approximation is
small:

Definition 4.4 (Derivative). f(r) is differentiable
at (r0) if there is a linear approximation L(r) = C+
n · r = C + Ax + By. (L is a linear approximation
at r0 if as r goes to r0 the error f(r)− L(r) goes to
zero even faster (i.e., lim|r−r0|→0

f(r)−L(r)
|r−r0| = 0)).

4.3 Chain Rule

Proposition 4.5 (Chain rule for differentials).
Given the functions f(u, v), u(t), and v(t), taking
the differential and applying the one-variable chain
rule gives

df =
∂f

∂u
du +

∂f

∂v
dv

=
∂f

∂u

du

dt
dt+

∂f

∂v

dv

dt
dt.

Again, to see why this is true, just try it out with
linear functions. Dividing the chain rule for differ-
entials by dt gives:

Proposition 4.6 (Chain rule (I)).

df

dt
=
∂f

∂u

du

dt
+
∂f

∂v

dv

dt
.

Proposition 4.7 (Chain rule (II)). In case u(t, s)
and v(t, s), holding s constant and applying chain
rule (I) gives

∂f

∂t
=
∂f

∂u

∂u

∂t
+
∂f

∂v

∂v

∂t
.

4.4 Directional derivatives and the gradi-
ent

Definition 4.8 (Directional derivative). The
derivative of f(x, y) in the direction û near the point
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r0 = (x0, y0) is just the rate of change of f as you
travel through r0 along a line in the direction û, i.e.,
df(r(t)
dt , where r(t) = r0 + tû:

Dûf
∣∣∣
r0

=
df(r0 + tû)

dt

=
dx

dt

∂f

∂x
+
dy

dt

∂f

∂y

= u1
∂f

∂x
+ u2

∂f

∂y

=
[
u1

u2

]
·

[
∂f
∂x
∂f
∂y

]

In other words,

Dûf = û · ∇f = |∇f | cos(θ) ,

where ∇f := (∂f∂x ,
∂f
∂y ) and θ is the angle between

û and the gradient vector ∇f . Thus the directional
derivative of f varies between −|∇f | and |∇f | and
is maximized in the direction of ∇f .

4.5 Implicit differentiation

Problem 4.1 (Implicit partial derivative). Suppose
that near r0 = (x0, y0, z0) the function f(x, y, z) is
smooth and ∂f

∂z 6= 0. Then the equation

f(x, y, z) = 0 (1)

implicitly defines a function z(x, y) near r0. To find
the partial derivatives of z, we can use the chain rule
to differentiate f(x, y, z(x, y)), being very clear with
notation. As a shortcut, take the differential of (1)
and get

∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz = 0. (2)

If we hold y constant, then dy = 0. Then

∂z

∂x
=
−∂f
∂x
∂f
∂z

. (3)
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