Problem: Expand the function

$$
f(x, y)=y^{2} e^{x+y}+x^{3} y^{2}+5
$$

in a Taylor series centered around the origin $(0,0)$ out to fourth order.
Solution: We want a polynomial whose derivatives agree with the derivatives of f near the origin. One way to do this is to calculate all the required derivatives.

There is a shortcut. This is nearly a polynomial already. The one problem is $g(x, y):=e^{x+y}$. If we replace this function with its fourth-order Taylor series we will be done (once we have expanded and collected like terms). But here we can make use of the Taylor series for the one-variable function

$$
e^{t}=1+t+t^{2} / 2+t^{3} / 3!+t^{4} / 4!+\cdots
$$

We plug in $x+y$ for t and get \ldots

