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1 My motivation.

I am trying to develop a fast solver to simulate fast mag-
netic reconnection in collisionless space plasmas. Magnetic
reconnection is the cancellation and reconfiguration of field
lines. In the ideal magnetohydodynamics (MHD) model of
plasma, magnetic flux is convected with the plasma, just as
flux of vorticity is convected with an ideal gas. In focused
regions where magnetic field gradients become sufficiently
strong, however, the frozen-in flux condition breaks down,
and reconnection ensues, resulting in the most powerful ex-
plosions in the solar system.

Ideal MHD is our macroscale model. It is of the form

∂tq +∇˜ · (f˜(q)) = 0;

this model is hyperbolic, i.e., (∀n˜) n˜ · f˜q
is diagonalizable

with real eigenvalues which are the wave speeds.

Our microscale model is a two-fluid collisionless model of
plasma. It is of the form

∂tq +∇˜ · (f˜(q)) =
1
ε
s(q);

this model also has hyperbolic flux, but it also has a stiff
oscillatory source term (i.e., ε is small and sq has imagi-
nary eigenvalues). In addition, it has fast waves (i.e., n˜ · f˜q

has large eigenvalues for all direction vectors n˜). MHD is
derived from the microscale model by taking ε → 0 (and
imposing additional approximating assumptions).

Solutions to the plasma models conserve various quanti-
ties. and maintain constraints on the magnetic and electric
fields called divergence constraints. In order to ensure that
the features of our numerical solution are physically cor-
rect, we seek to develop numerical methods which somehow
enforce or maintain a discretized version of these physical
constraints. We hope thereby to make sure not only that
our numerical solution diverges slowly from the physical so-
lution but also that the numerical solution remains close to
the manifold of physically possible solutions for all time and
exhibits physically correct behavior (in particular, shocks
should travel at the right speeds).

Numerical methods which (up to numerical precision) main-
tain discretized versions of physical constraints are called
mimetic. Mimetic methods are generally derived by in-
tegrating the corresponding physical laws over mesh cells
(which leads to an underdetermined system) and then clos-
ing the system by positing a discrete constitutive relation
(such as an estimate of discretized flux based on discretized
state values). For an excellent high-level discussion of con-
servative methods based on mimetic differencing operators,
see [2].

2 Shock-capturing.

In problems where the hyperbolic term is strong (i.e., where
convection plays an important role), we seek methods which
are shock-capturing. This means that shock waves (1)
should move at the correct speed and (2) should have the
correct shape. The Rankine-Hugoniot jump condition tells
us that to ensure that shock waves travel at the right
speed, the numerical method should be conservative, i.e.,
the change in the amount of stuff in each cell should be
representable in terms of fluxes across boundary elements.
To ensure that we get clean shocks without smearing or
artificial oscillations near the shock, we apply limiters to
high-order estimates of flux.

3 Classes of methods.

Shock-capturing methods tend to be explicit (or perhaps
semi-implicit). Explicit methods are simple and allow for
a small stencil, but a small stencil requires a time step
short enough to allow information to propagate. In hy-
perbolic systems information can only propagate as fast as
the fastest wave, so explicit methods are a natural choice.

To obtain high-order conservative methods, one needs to
calculate high-order estimates of the flux across cell bound-
aries. Two approaches are: (1) to widen the stencil to in-
clude information from more cells (collocation methods),
or (2) to include more information in each cell (Galerkin
methods). There are also two approaches to space-time
coupling: (1) first discretize in space to get a system of
ODEs in time and then discretize in time (this is known
as the method of lines (MOL)), or (2) discretize space and
time together. Combining possibilities gives four types of
conservative methods:

high-order time prominent
mechanism discretization example
collocation MOL WENO
collocation space-time Lax-Wendroff
Galerkin MOL RK-DG
Galerkin space-time STE-DG

Collocation methods represent states using point values and
estimate fluxes using interpolating polynomials. Galerkin
methods represent states as a linear combination of a fi-
nite set of basis functions and estimate fluxes by numerical
integration.

Not all methods fit neatly into one of these categories. In
particular, a representation in terms of point values may
be equivalent to a representation in terms of a linear com-
bination of a basis of interpolating polynomials. For ex-
ample, “nodal” discontinuous Galerkin methods represent
solutions in terms of values
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3.1 Advantages of MOL-DG

The advantages of MOL-DG are generally related to its high
level of decoupling. First, the use of MOL decouples space
and time and so decouples the order of accuracy in space
and time. For MOL methods the instantaneous flux is es-
timated. This means that the order of accuracy does not
depend on the order of accuracy of flux estimates. 1 Sec-
ond, DG has minimal coupling between cells. The stencil
of a given cell never extends beyond its nearest neighbors
regardless of the order of accuracy. (This is made possi-
ble by high-order representation and the explicit scheme).
Since the evolution stencil only depends on neighboring
cells, DG makes it easy to get high-order accuracy for arbi-
trary meshes.

3.2 Disadvantages of DG

Finite Volume methods have the advantage that it is easy
to formulate mimetic operators which preserve divergence
constraints up to numerical precision. Mimetic (“mixed”)
DG methods have to use a staggered mesh, which couples all
cells and therefore requires inverting a nondiagonal matrix.
We instead resort to divergence cleaning.

4 DG framework

The FV framework begins by integrating the balance law
q

t
+ ∇˜ · f˜ = s over each mesh cell. The DG framework,

however, is based on the variational formulation of the bal-
ance law. We first multiply the balance law by an arbitrary
test function v and then integrate over an arbitrary region
C (which we anticipate to be a mesh cell):∫

C

(q
t

+∇˜ · f˜ = s) · v, i.e.,

∂t

∫
C

q · v +
∫

C

(∇˜ · (f˜ · v)− f˜ : ∇˜v) =
∫

C

s · v, i.e.,

∂t

∫
C

q · v +
∫

∂C

n˜ · f˜ · v −
∫

C

f˜ : ∇˜v =
∫

C

s · v.

If we choose v to be the identity matrix, this reduces to
the finite volume assertion that the amount of stuff in each
mesh cell is conserved.

To discretize the method, we project the equation onto a
finite-dimensional subspace spanned by a basis of functions

1For Finite Volume methods, the left and right states are the cell
center values, and the Riemann solver’s task is to estimate the average
flux over the course of a time step. Since the flux rate changes over
the course of a time step, flux estimates must be of high order in order
to get a high-order method.

For MOL, the left and right states are the solution representation
evaluated at the left and right sides of the boundary, and the Riemann
solver’s task is to estimate the instantaneous flux at the boundary. If
the representation of the solution is n-th order accurate then the left
and right states at a boundary should agree to n-th order and so
should the left flux, right flux, and any stable flux estimate based on
the left and right states.

consisting of polynomials up to a given order multiplied
by the characteristic function of each cell. These basis
functions are not continuous (thus the name discontinuous
Galerkin).

Let {vj}Nj=1 denote such a basis, and let {vj}Nj=1 denote
its reciprocal basis. Define the inner products for tuple-
valued and matrix-valued functions by 〈u, v〉 :=

∫
u · v and

〈f˜,∇˜v〉 :=
∫
f˜ : ∇˜v, and define a boundary inner product

by 〈f˜, v〉∂ :=
∫

∂
n˜ · f˜ · v, where ∂ denotes the boundary

of the region in question and n˜ denotes the unit normal.
Integration by parts tells us that 〈∇˜ · f˜, vj〉 = 〈f˜, vj〉∂ −

〈f˜,∇˜vj〉.

So our variational formulation reads

∂t〈q,v〉+ 〈f˜,v〉∂ − 〈f˜,∇˜v〉 = 〈s,v〉.

The projection of the evolution equation onto the space of
test functions is:

N∑
j=1

vj〈vj , ∂tq +∇˜ · f˜ = s〉, i.e.,

N∑
j=1

vj

(
∂t〈q, vj〉+ 〈∇˜ · f˜, vj〉 = 〈s, vj〉

)
, i.e.,

N∑
j=1

vj

(
∂t〈q, vj〉+ 〈f˜, vj〉∂ − 〈f˜,∇˜vj〉 = 〈s, vj〉

)
. (1)

To close this evolution equation for the projection of the
solution onto the space of test functions, we need constitu-
tive relations that specify the projection of the divergence
of the flux and of the source term. We obtain them by
estimating the inner products involving the flux and the
source term, which we do by pretending that the projection
of the solution onto the test space is the solution and using
Gaussian quadrature to approximate the integrals. Then
q =

∑N
j=1 vj〈vj , q〉, and equation (1) is a system of N or-

dinary differential equations in N unknowns, which we can
solve using an ODE solver (e.g. high-order explicit Runge-
Kutta or Spectral Deferred Correction).

Limiting is done by limiting the solution itself. We limit
the polynomial basis functions from high order to low order.
Each basis function is limited by differencing the coefficients
of the next lower order basis function.
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