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This note shows (A) that gas-dynamic entropy of a
single species of a gas is a strictly convex function of
the state variables of the gas (1) for the Boltzmann
model and (2) for moment closures that minimize
mathematical entropy and (B) that the entropy of a
plasma can be defined to be a convex function of its
state variables.

1 Definitions

Discrete variables.
s := generic species index
i := ion species index
e := electron species index
D := number of dimensions of space (3)

Parameters.
ε0 := permittivity of free space
µ0 := permeability of free space

Independent variables.
t := position in space
x := position in space
v := particle velocity

State variables.
E(t,x) := electric field
B(t,x) := magnetic field
fs(t,x,v) := particle number density of species s

Derived variables.
S := generic entropy
Sgas := gas-dynamic entropy
Stot := total entropy
E := generic energy
Etot := total energy
Egas := gas-dynamic energy
Eem := electromagnetic energy

2 Boltzmann model

The Boltzmann equation asserts conservation (or
balance) of particles in phase space,

∂tfs +∇x · (vfs) +∇v · (afs) = Cs,

where qs = ±e is particle charge, ms is particle mass,
a = qs

ms
(E+v×B) is the (Lorentz law) acceleration,

and Cs is the collision operator.

For simplicity, we consider the case of two species.
Then the state variables for the Boltzmann model
are fi, fe, E, and B.

I claim that a strictly convex entropy for the Boltz-
mann system is

Stot := Sgas + κEtot,

where

Etot = Egas + Eem

and κ is an arbitrary positive (for mathematical en-
tropy) constant.

To verify this claim it is enough to show that

1. electromagnetic energy is strictly convex in E
and B,

2. gas-dynamic energy is flat (linear) in fi and fe,
and

3. the gas-dynamic entropy is strictly convex in
fi and fe.

To demonstrate convexity (for a continuous or
Lebesgue-measurable function) it is sufficient to
prove midpoint convexity. That is, to show that the
entropy is a convex function of the conserved state
variables we need that the entropy of the average of
two states is less than the average of their entropies.

Firstly, the electromagnetic energy is

ε0E
2/2 +B2/(2µ0);

thus, the electromagnetic energy is a norm, so it is
convex in its variables.

Secondly, the gas-dynamic energy is

Ei + Ee,

where the gas-dynamic energies of each species are
defined to be

Ei = (mi/2)
∫
v
v2fi and

Ee = (me/2)
∫
v
v2fe.

The thermal gas-dynamic energy is flat, since∫
v
v2(f1 + f2) =

∫
v
v2(f1) +

∫
v
v2(f2) (∀f1, f2).
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Thirdly, the gas-dynamic entropy is defined by the
relations

η(f) := f ln f + αf,

S(f) :=
∫
v
η(f),

Si := S(fi),
Se := S(fe),
Sgas = Si + Se,

where α is an arbitrary universal constant. (We will
see that choosing α := (ln(2π)− 1)D/2, where D is
the number of spatial dimensions, yields an entropy
consistent with the common gas-dynamic formulas.)
Since η is convex (η′′(f) = 1/f > 0), so is S and so
is the gas-dynamic entropy.

To confirm that Stot is actually an entropy, one needs
to confirm that (1) in the absence of collisions en-
tropy remains constant and (2) in the presence of
collisions entropy does not increase. Since flow in
phase space is incompressible, we can rewrite the
Boltzmann equation as

∂tfs + v · ∇xfs + a · ∇vfs = Cs.

Multiplying by η′(f),

∂tηs + v · ∇xηs + a · ∇vηs = η′Cs, i.e,
∂tηs +∇x · (vηs) +∇v · (aηs) = η′Cs.

Integrating over velocity space,

∂tS
gas
s +∇x · (vSgas

s ) =
∫
v
η′Cs,

that is,

∂tS
gas
s +∇ · (usS

gas
s ) +∇ · (csS

gas
s ) =

∫
c
η′Cs,

where u denotes bulk fluid velocity and c : v − u
denotes thermal particle velocity.

Thus, entropy is conserved in the absence of colli-
sions; we will require the net production of mathe-
matical entropy by the collision operators to be neg-
ative:∫

v
η′Ci +

∫
v
η′Ce ≤ 0.

In particular, interspecies collisions must satisfy this
inequality and intraspecies collisions must satisfy∫
v η

′Cs ≤ 0.

The 5-moment and 10-moment closures minimize
mathematical entropy over all distributions with a

given set of moments. To see that the entropy of an
entropy-minimizing closure is convex, consider two
states q1 and q2 and let f1 6= f2 be the correspond-
ing entropy-minimizing distributions. The moments
of the averaged distribution (f1 + f2)/2 are the mo-
ments of the averaged state (q1 + q2)/2, so taking
S(·) as “the entropy of”,

(S(q1) + S(q2))/2
= (S(f1) + S(f2))/2
> S((f1 + f2)/2)
≥ S((q1 + q2)/2),

as needed.

3 Verification of convexity for 5-
moment gas

Of course one may also directly verify the convexity
of the entropy for the 5- and 10-moment closures.

Here is a physical experiment that argues that en-
tropy is a a convex function of density and thermal
energy in the 5-moment case. Put equal amounts of
gas in containers of equal volume and allow them to
exchange all conserved variables freely. Symmetry
dictates that in equilibrium the gas in both contain-
ers will be in the same state, and since the state vari-
ables are conserved their final values will be the av-
erage of their initial values. The total entropy must
decrease, so the final entropies must be less than the
average of the initial entropies.

To show more generally that entropy is a convex
function of density, momentum, and total energy
contemplate a completely inelastic collision between
two equal volumes followed by the experiment above.
The collision adds heat, decreasing the total math-
ematical entropy. (And then the subsequent equi-
libration of the two volumes further decreases the
mathematical entropy.)

Mathematically, making the definitions
A := average of two values,
n := density,
M := momentum,
E := total energy,
U := thermal energy,
K := kinetic energy,
S := entropy,

and noting
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Property Name
AS(n,U) < S(An,AU) (strict convexity of entropy in n and U),
U = E −K (linearity of thermal energy in E and K),
AK(n,M) >= K(An,AM) (convexity of kinetic energy in n and M),
AK(n0,M) > K(n0, AM) (strict convexity of kinetic energy in M),
SU < 0 (monotonicity of entropy in thermal energy),
UK > 0 (monotonicity of thermal energy in kinetic energy),

we verify convexity by

Statement/Expression Reason
AS(n,U)
≥ S(An,AU) (convexity of S in n and U)
= S(An,U(AE,AK)) (linearity of U in E and K)
≥ S(An,U(AE,K(An,AM))) (convexity of K and monotonicity of U and S)
= S(An,AE,AM)

as needed for convexity. For strict convexity, the first inequality is strict if n1 6= n2 or U1 6= U2 (e.g.
E1 6= E2 and M1 6= M2) and the second inequality is strict if M1 6= M2 but n1 = n2.

To see that kinetic energy is semidefinite, taking
K = M2/(2n),
I := DxD identity matrix, and
′ := transpose,

the Hessian of K(n,M) is

Hessian(K) =
[

I/n −M/n2

−M′/n2 M2/n3

]
;

a block determinant computation gives
det(Hessian(K)) = det((M2I−MM)/n4) = 0, since
(M2I−MM) ·M = 0 shows that 0 is an eigenvalue.
Since I is positive definite, we may conclude that

Hessian(K) is semidefinite.

For the strict convexity of an ideal gas,

(γ − 1)S = −n ln((γ − 1)U/nγ)
= −n ln(γ − 1))− n lnU + γn lnn

has Hessian[
γ/n −1/U
−1/U n/U2

]
with determinant (γ − 1)/U2, which is positive as
long as γ > 1.

3


