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1 Definition of quantities.

s = species index; typically s ∈ {e, i},
where e denotes electron and i denotes ion.

All quantities with a subscript s are specific to the
species s.

qs = charge of a particle

ms = mass of a particle

ns = particle number density

us = average particle velocity

σs := nsqs = charge density (Some call this ρqs.)

ρs := nsms = mass density (Some call this ρms.)

Js := σsus = charge flux = current density
(Some call this Jqs.)

(ρsus) = mass flux = momentum density
(Some call this Jms.)

Ps = pressure tensor

ps = scalar pressure

εs = gas-dynamic energy per volume

Ts = temperature

Ss = entropy

Rs = drag force (per volume) on species s due to col-
lisions with other species.

q = heat flux vector

Qs = rate of heat transfer from other species to species
s (due to collisions).

Ks = rate of energy transfer from other species to
species s due to collisions
= Rs · us + Qs.

Quantities without a subscript apply to the plasma as
a whole.

σ :=
∑

s σs = net charge density

ρ :=
∑

ρs = net mass density

J :=
∑

Js = net current density

(ρu) :=
∑

ρsus = net momentum density

(i.e. u :=
P

ρsus

ρ
.)

P :=
∑

s Ps = pressure tensor

E = electric field

B = magnetic field

Vs = some volume element convected by us.

Let
∫

:=
∫

Vs

and let
∮

:=
∫

∂Vs

.

Let ds
t := ∂t + us · ∇ denote the convective derivative.

Let δ̄s
t := α 7→ (∂tα+∇·(usα)) denote the conservative

derivative.

2 Conservation of mass.

We assume that particles are conserved. This means
that the number of particles of species s in a volume
convected by us remains constant:

dt

∫

Vs

ns = 0 ⇐⇒ δ̄s
t (ns) = 0

⇐⇒ ∂t(ns) + ∇ · (usns) = 0

Multiplying by qs gives charge conservation:
∂t(σs) + ∇ · (Js) = 0

Multiplying by ms gives mass conservation:
∂t(ρs) + ∇ · (ρsus) = 0

Deriving one-fluid equation.

If we sum over all species s, we get equations for con-
servation of net charge and total mass:

∂tσ + ∇ · J = 0

∂tρ + ∇ · (ρu) = 0

3 Conservation of momentum.

To write conservation of momentum, we must iden-
tify the sources of forces. The fundamental forces are
electromagnetic force, nuclear force, and gravitational
force. We are ignoring gravity.

We model the net force on a species as the sum of
a macroscopic electromagnetic field (averaged over a
region roughly the size of a Debye sphere) plus a pres-
sure force (due to collisions with particles of the same
species, which cancel everywhere in a convected test
volume except at the boundary) plus a resistive drag
force due to collisions with other species:

dt

∫

msnsus = −
∮

n̂ ·Ps +
∫

(qsns(E+us×B))+
∫

Rs

∂t(ρsus) + ∇ · (ρsusus) = −∇ · Ps + σsE + Js × B + Rs

Deriving one-fluid momentum equation.

We sum over all species. Since total momentum is con-
served for any collision process,

∑

s Rs = 0. For the
linear terms the sum effectively replaces each species
quantity with the corresponding net quantity.

We handle the nonlinear term in the standard manner
of statistical mechanics, by absorbing the nonlinear-
ity into the pressure tensor. We define:
ws := us − u

ws is the average velocity of species s relative to the
net velocity u, also known as the diffusive velocity

for species s.

Then
∑

s ρsws =
∑

s ρs(us−u) =
∑

s ρsus−
∑

s ρsu =
ρu − ρu = 0.

So
∑

s ρsusus =
∑

s ρs(u + ws)(u + ws)
= ρuu +»»»»»»∑

s ρsuws +»»»»»»∑

s ρswsu +
∑

s ρswsws
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Define P0s := Ps + ρswsws

Define P0 :=
∑

s P0s = P +
∑

s ρswsws

So the net (i.e. one-fluid) momentum equation is:

∂t(ρu) + ∇ · (ρuu) = −∇ · P0 + σE + J × B

4 Conservation of energy.

The total energy of the system is the energy of the
electromagnetic field plus the (kinetic) energy in each
species. (Again we are ignoring gravity.) The kinetic
energy εs of species s is the sum of the macroscopic
kinetic energy 1

2
ρsu

2
s plus the thermal energy per unit

volume, ρses, where es is the thermal energy per unit
mass:
εs = ρses + 1

2
ρsu

2
s

The gas-dynamic energy of the species s within the
convected test volume Vs is changed as a result of work
performed by electromagnetic and pressure forces,
heat flow within the species, and interaction (colli-
sions) with other species. Energy balance for species
s is thus:

dt

∫

εs = −
∮

(n̂ · Ps · us) + −
∮

n̂ · (qs)
+

∫

us · (nsqs(E +»»»»us × B)) +
∫

Ks.

Recall that Ks denotes the rate of transfer of energy
from other species to s due to collisions.

Cast as a differential equation, this says:

∂tεs +∇· (usεs) = −∇· (Ps ·us)+−∇·qs +Js ·E+Ks

4.1 Deriving one-fluid energy equation.

We again sum over all species, as we did for the one-
fluid momentum balance. Since total kinetic energy
is conserved for any collisional process,

∑

s Ks = 0.
We again deal with nonlinear terms using us = u +
ws. In deriving the one-fluid momentum equation
we linearized by absorbing the nonlinearity from the
inertial term into the definition of pressure. Here we
linearize by absorbing anything we don’t want into
the definition of the heat flux.

The equation we want is:

∂tεs +∇ · (uεs) = −∇ · (P0s ·u)−∇ ·q0s +Js ·E+ Ks

(Summing over all species gives this same equation
without the s subscripts, which is the desired 1-fluid
equation.)

Comparing this with the actual conservation of energy
equation for species s tells how we need to define q0s.

Taking the difference of the two equations and sum-
ming over species gives:

∇ ·
∑

s (wsεs + Ps · us − P0s · u + qs − q0s) = 0
(1-fluid heat flux requirement)

There is a great deal of freedom here in choosing
how to work backwards to a definition of q0s. Of
course we could just throw out the divergence and
the sum in the previous equation and satisfy the
book-keeping requirement of the exact 1-fluid equa-
tion, but we seek a definition of q0s that minimizes
the size of the terms appearing in q0s−qs. The most
obvious requirement to satisfy is to express the heat
flux requirement purely in terms of relative veloci-
ties, eliminating all references to absolute velocity.
You can throw out the divergence at this point, since
I don’t see any way to use the divergence to make
anything cancel.

∑

s

(

wsεs + (Ps − P0s) · u + Ps · ws + qs − q0s

)

= 0
Using

∑

s ρsws = 0 and P0s − Ps = ρswsws, get:
∑

s

(

wsρs(es +
½

½1

2
u2 +»»»»ws · u + 1

2
w2

s)
−((((((ρswsws · u + Ps · ws + qs − q0s

)

= 0
So we can make the definition

q0s := qs + wsρs(es + 1

2
w2

s) + Ps · ws

This says that the contribution of each species to the
effective heat flux is its own heat flux plus its relative
energy flux plus the relative work performed by its
internal pressure. (The reason no interactions with
other species are incorporated here is that in the
average they cancel.)

So the net (i.e. one-fluid) energy equation is:

∂tε + ∇ · (uε) = −∇ · (P0 · u) −∇ · q0 + J · E

Recall here that ε, P0, q0, and J are sums of the cor-
responding quantities for each species.

Hopefully q0 − q :=
∑

s wsρs(es + 1

2
w2

s) + Ps · ws

and P0 − P =
∑

s ρswsws are small and well-
behaved.
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