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1 Introduction.

The Fundamental Theorem of Numerical Analysis
(FTNA) states that for a numerical method, consistency
plus stability implies convergence. These terms are defined,
and the statement is proved, per context. As an abstract
statement, it seems to be a principle rather than a theorem.
(Generalized versions of the theorem shift the work into
demonstrating that the hypotheses are satisfied.)

This exposition will define these terms and explain why this
theorem is true, for a range of contexts.

2 FTNA notions for generic and
initial value problems.

A problem consists of data and an equation that must
be solved for an unknown. An initial value problem
(IVP) consists of initial data (and possibly boundary data)
and a differential equation which determines the evolution
of the solution over time. For initial value problems, the
Fundamental Theorem of Numerical Analysis is known as
the Lax-Richtmyer theorem.

A numerical method for a (continuum) problem is a dis-
crete problem (more properly a family of discrete problems
indexed by a parameter) whose solution is intended to ap-
proximate the solution of the problem.

A numerical algorithm is an algorithm for computing the
solution of a numerical method. 1

Solutions to differential equations are generally computed
on a discretized domain called a mesh. Numerical methods
for initial value problems compute a solution at a sequence
of discrete points in time. We refer to computing the so-
lution at a point in time based on a value at the previous
point in time as applying a time step to the value.

To discuss whether a numerical solution approximates the
solution of a problem, we need (1) a measure of the distance
between a numerical solution and the exact solution to the
problem, and (2) a method parameter which we can use to

1Wikipedia: An algorithm is a finite set of instructions for accom-
plishing some task which, given an initial state, will terminate in a
corresponding recognizable end-state.

vary the numerical method. For differential equations this
parameter is typically some measure of the mesh size. The
finer the mesh, the greater the potential of the numerical
method to accurately represent the exact solution.

A numerical method is said to converge to a solution if
the distance between the numerical solution and the exact
solution goes to zero as the method parameter approaches
some limit (e.g. the mesh size goes to zero). Convergence
is the desired property of a numerical method.

To have any hope of convergence, the problem itself must
be stable, or well-posed. Perturbing the data of a prob-
lem produces a resulting perturbation in the solution of the
problem. Assume that there is a measure defined on these
perturbations. Refer to the ratio of the magnitude of the
perturbation in the solution divided by the magnitude of
the perturbation in the data as the error growth fac-
tor. If the error growth factor is bounded independent of
the perturbation (sufficiently small) in the initial data, then
we say the problem is well-posed. In particular, an initial
value problem is well-posed (over a finite time interval) if
the factor by which an initial error can grow is bounded.

To have any hope of convergence, the numerical method
must also be stable. This means that the error growth
factor is bounded independent of the method parameter or
perturbation of the initial data. For a discretized initial
value problem, stability means that the factor by which an
initial error can grow is bounded independent of the mesh
size (for any allowed mesh).

Stability is purely a property of the numerical method and
is independent of the problem. Likewise, well-posedness
is purely a property of the problem and is independent of
the numerical method. To have any hope of establishing
convergence, it is necessary to establish some kind of con-
nection between the problem and the numerical method.
This connection is called consistency.

Roughly speaking, a numerical method is said to be con-
sistent with a problem if the exact solution to the problem
approximately satisfies the discretized problem. This is not
the same as saying that the exact solution to the problem
approximately equals the exact solution to the discretized
problem. For a differential equation, consistency means
that a solution to the initial value problem approximately
satisfies the discretized equation as the mesh size goes to
zero. For an initial value problem, consistency means that
the error committed by the numerical algorithm over a sin-
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gle time step is small. We will make the notion of consis-
tency more precise below.

The beauty of consistency is that it is a local property,
and hence easy to verify, whereas convergence is a global
property.

The fundamental theorem of numerical analysis says that
consistency plus stability implies convergence.

For an initial value problem, the fundamental theorem sim-
ply says that if the error committed on each time step is
small enough, and if the rate of error growth is bounded,
than the error in the solution will remain small. Intuitively
this is obvious. The rest of this exposition attempts to make
these ideas more precise for this case.

3 Initial Value Problems: The Lax-
Richtmyer Theorem

Consider the initial value problem

(P )
{

y′ = Ly 0 ≤ t ≤ T
y(0) = y0

and the associated family of numerical methods indexed by
the number of time steps N ∈ N or by the size of each time
step k = T/N ,

(M)
{

Yn+1 = LkYn 0 ≤ n ≤ N
Y0 = y0.

Let tn denote the nth time point: tn = nk. Let yn denote
the value of the exact solution at time tn: yn = y(tn).

We will assume that the method (M) is stable. This means
that there is a bound B (independent of k) on the factor by
which error can grow over the duration of the time interval
T . If the operator Lk is linear, to demonstrate stability it
is sufficient to show that (∃B <∞) (∀k)

‖Lk‖ ≤ eBk.

(Equivalently ‖Lk‖ ≤ 1 + Bk.) For then ‖YN‖/‖Y0‖ ≤
‖LN

k ‖ ≤ ‖Lk‖N ≤ eBkN ≤ eBT =: S.

We will assume also that (P) and (M) are consistent of
order m. This means that the error committed by the
numerical algorithm over a single time step is small: ‖yn+1−
Lkyn‖ ≤ km+1C (for some C <∞), where C is independent
of n (i.e. time).

We will show that YN converges to yN as k → 0. Define the
local truncation error dn to be the difference between the
value predicted by applying a time step to the exact solution
and the value of the exact solution at the incremented time
point tn+1:

dn = Lkyn − yn+1.

The (accumulated) error en is simply the difference be-
tween the exact solution and the numerical solution:

en = Yn − yn

If Lk is a linear operator, then the error at the incremented
time point tn+1 equals the local truncation error (which is
limited by consistency) plus the application of a time step
to the accumulated error: en+1 = Yn+1 − yn+1 = LkYn −
yn+1 = (LkYn − Lkyn) + (Lkyn − yn+1). That is:

en+1 = Lken + dn.

This equation is the essense of the proof. It is a linear
difference equation. The truncation error dn is the forcing
function. By linearity, the error introduced by the forcing
function at each time step grows indepently. By stability,
the growth in the error introduced by d0 is bounded by S <
∞. By consistency, the error introduced by d0 is bounded
by Ckm+1. So after all N time steps, the error introduced
by d0 is still bounded by SCkm+1. For any 0 < n ≤ N , the
error introduced by dn has less time to grow than the error
introduced by d0. Since there are N time steps, the total
accumulated error eN is therefore bounded by SCNkm+1 =
SC(T/k)km+1 = (SCT )km. So on the time interval 0 ≤
t ≤ T the error never exceeds (SCT )km. i.e. the global
(truncation) error is of order km. This is what it means for
the method to have convergence of order m.

Exercise: The above proof unsharply assumes that Y0 =
y0. Modify it to work under the weaker assumption that
‖Y0(k)− y0‖ ≤ kmC (some C).

4 Extension to nonlinear operators.

The fundamental theorem of numerical analysis can be ex-
tended and applied to operators L which are nonlinear but
sufficiently smooth by local linearization. An operator L
(say a differential operator on a Banach space of functions)
is smooth if it can be locally approximated by a linear op-
erator DL, called its derivative:
L(y + ∆y) = L(y) + DL(∆y) + O(‖∆y‖2).

In this case the error growth equation becomes:
en+1 = dn + Lk(yn + en)− Lk(yn)
= dn + (DLk|yn)(en) + (1/2)(D2Lk)|yn+ten)(en ⊗ en).
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