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The basic idea of Lagrange Multipliers is that a differen-
tiable function f cannot have a local maximum at a point
r0 when restricted to a differentiable surface or curve (given
by the level sets gi(r) = Ci) if the gradient of f has a com-
ponent parallel to the surface. In other words, f can only
have a maximum at a point r0 where f and g are smooth
if ∇f is perpendicular to the surface at p0. But this means
that the gradient of f must be in the span of the gradients
of the constraint equations.

Proposition 1 (Lagrange Multiplers). Let f : Rn 7→ R and
let {gi(r) = Ci}mi=1 be m constraint equations, where gi :
Rn 7→ R. Let r0 be a local extremum of f on the manifold
(surface or curve) defined by the constraint equations, and
suppose that f and gi are differentiable at r0.

Then there exist λi, i = 1, . . . ,m such that at r0

∇f =
m∑

i=1

λi∇gi.

Justification of 1. Let r(t) represent an arbitrary differen-
tiable path in the contraint manifold, i.e. gi(r(t)) = Ci for
all i, and suppose that r(0) = r0 and r′(0) 6= 0. Then the
function h(t) := f(r(t)) has a local extremum at t = 0, so
0 = d

dth(0) = d
dtf(r(t))|t=0 = r′(0) ·∇f . Similarly, differen-

tiating the constraint equations gives 0 = d
dtgi(r(t))|t=0 =

r′(0) · ∇gi. So we have shown that if u · ∇gi = 0 then
u · ∇f = 0, i.e., if u is perpendicular to ∇gi for all i then
it must be perpendicular to ∇f . This means that ∇f must
be a linear combination of the ∇gi. (To see this, write ∇f
as the sum of a vector (∇f)‖ in the span of ∇gi and a vec-
tor (∇f)⊥ in the orthogonal complement of the gi. Taking
r0 = (∇f)⊥ shows that (∇f)⊥ must be zero.)

Proposition 2 (Necessary/Sufficient Condition for Local
Extremum). Suppose that in a neighborhood of r0 f : Rn 7→
R and gi : Rn 7→ R are smooth functions and ∇g(r0) 6= 0.
A sufficient [respectively necessary] condition for f to have
a local minimum (respectively local maximum) at r0 sub-
ject to the constraints gi(r) = gi(r0) is: there exist con-
stants λi such that for the function fL(r) = f(r)−

∑
i λigi,

∇fL(r0) = 0 and ∇∇fL(r0) is [semi]positive (respectively
[semi]negative) definite when restricted to the orthogonal
complement of the constraint gradients gi.

Justification of 2. We show the case where positive defi-
nite implies local minimum. Assume the hypotheses. It
is enough to show that d2

dt2 f(r(t))|t=0 > 0 if r′(0) 6= 0. But

d2

dt2 f(r(t)) = d
dt (r′(t) ·∇f(r(t))) = r′′(t) ·∇f+r′ ·(∇∇f) ·r′.

But ∇f(r0) =
∑

i λi∇gi(r0), and twice differentiating
gi(r(t)) = 0 shows that r′′ · ∇gi = −r′ · (∇∇gi) · r′, so
d2

dt2 f(r(t))|t=0 = r′ · ∇∇(f −
∑

i λigi) · r′, which is positive
by the assumption that fL := f−

∑
i λigi is positive definite

for vectors r′(0) in the orthogonal complement of the con-
straint gradients (i.e. the tangent space of the constraint
manifold).

Another way to view Lagrange multipliers is that they are
a means of penalizing “infeasabilities”, i.e. perturbations
in disallowed directions. Lagrange multipliers solve con-
strained optimization problems by adding a term whose
derivative is always zero precisely for allowed perturbations.
In particular, suppose h(r, λ) := f(r) + λg(r) has an ex-
tremum at r0, λ0. Then at this point 0 = dth(r(t), λ(t)) =
r′ ·∇(f +λg) +λ′g (∀r′, λ′). Note that this is equivalent to
∇(f + λg) = 0 and g = 0. But this implies that r′ · ∇f = 0
if r′ · ∇g = 0, i.e., dtf(r) = 0 if dtg(r) = 0, which is what
it means for f to have a stationary point at r0 subject to
the constraint g = 0. (I don’t see how to reverse this proof
to show the existence of a lambda without resorting to an
argument such as what I used here for Proposition 1).
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