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The basic idea of Lagrange Multipliers is that a differen-
tiable function f cannot have a local maximum at a point
ro when restricted to a differentiable surface or curve (given
by the level sets g;(r) = C;) if the gradient of f has a com-
ponent parallel to the surface. In other words, f can only
have a maximum at a point ro where f and ¢ are smooth
if Vf is perpendicular to the surface at py. But this means
that the gradient of f must be in the span of the gradients
of the constraint equations.

Proposition 1 (Lagrange Multiplers). Let f : R” — R and
let {gi(r) = C;}™, be m constraint equations, where g; :
R™ +— R. Let rg be a local extremum of f on the manifold
(surface or curve) defined by the constraint equations, and
suppose that f and g; are differentiable at r.

Then there exist \;,i =1,...,m such that at rg

m

Vi=> AiVgi.
=1

Justification of 1. Let r(t) represent an arbitrary differen-
tiable path in the contraint manifold, i.e. g;(r(t)) = C; for
all i, and suppose that r(0) = rg and r’'(0) # 0. Then the
function A(t) := f(r(¢)) has a local extremum at ¢t = 0, so
0= 2Lh(0) =4 f(r(t))|s=0 = 1'(0) - V. Similarly, differen-
tiating the constraint equations gives 0 = %gi(r(t))\tzo =
r'(0) - Vg;. So we have shown that if u - Vg; = 0 then
u-Vf =0, ie., if uis perpendicular to Vg; for all ¢ then
it must be perpendicular to V f. This means that V f must
be a linear combination of the Vg;. (To see this, write V f
as the sum of a vector (V f)| in the span of Vg; and a vec-
tor (Vf), in the orthogonal complement of the g;. Taking
ro = (Vf).L shows that (Vf), must be zero.) O

Proposition 2 (Necessary/Sufficient Condition for Local
Extremum). Suppose that in a neighborhood of ro f : R™ —
R and g; : R™ — R are smooth functions and Vg(rg) # 0.
A sufficient [respectively necessary/ condition for f to have
a local minimum (respectively local mazimum) at ro sub-
ject to the constraints g;(r) = g;(ro) is: there exist con-
stants \; such that for the function fr(r) = f(r) —>_, Nigi,
ViL(ro) = 0 and VV fL(ro) is [semifpositive (respectively
[seminegative) definite when restricted to the orthogonal
complement of the constraint gradients g;.

Justification of 2. We show the case where positive defi-

nite implies local minimum. Assume the hypotheses. It
2

is enough to show that 4 f(r(t))[s—o > 0 if ’(0) # 0. But

S () = H@ @) V(@) =r"(t)-VI+r'-(VVf)-r".
But Vf(rg) = > ,AVgi(rg), and twice differentiating
gi(r(t)) = 0 shows that v’/ - Vg; = —r’' - (VVg;) - 1/, so
%f(r(t))h:o =1 -VV(f—>,Xigi) - r', which is positive
by the assumption that f; := f—>, Xig; is positive definite
for vectors r'(0) in the orthogonal complement of the con-

straint gradients (i.e. the tangent space of the constraint
manifold). O

Another way to view Lagrange multipliers is that they are
a means of penalizing “infeasabilities”, i.e. perturbations
in disallowed directions. Lagrange multipliers solve con-
strained optimization problems by adding a term whose
derivative is always zero precisely for allowed perturbations.
In particular, suppose h(r, ) := f(r) + Ag(r) has an ex-
tremum at rg, Ag. Then at this point 0 = dih(r(t), A(t)) =
-V (f4+Ag)+Ng (Vr', X). Note that this is equivalent to
V(f+Ag) =0and g = 0. But this implies that v’ - Vf =0
ifr'-Vg=0,1ie., df(r) =0if dig(r) = 0, which is what
it means for f to have a stationary point at ry subject to
the constraint g = 0. (I don’t see how to reverse this proof
to show the existence of a lambda without resorting to an
argument such as what I used here for Proposition 1).



