Fundamental Equations of Plasmas,
by E. Alec Johnson, March 28, 2007

1 Full one-fluid plasma equations.
1.1 Definitions of Quantities.

n = particle number density
1.1.1 Electromagnetic quantities.

B = magnetic field
E = electric field
S = Poynting vector
€9 = permittivity of vacuum
1o = permeability of vacuum
¢ = speed of light
o = charge density
J = current density (net charge flux)
1 = resistivity
1.1.2 Mechanical quantities.

p = net mass density

v = fluid velocity

(pv) = momentum density (i.e. mass flux)
p = gas-dynamic pressure

o = viscous stress tensor

total mechanical stress tensor

= stress of electromagnetic field

e = deformation rate (strain rate, even part)
/_1, = shear viscosity

A = “balancing bulk viscosity”

(=311

1.1.3 Thermodynamic quantities.

q = heat flux
T = temperature
# = heat conductivity
v = ratio of specific heats
R = gas constant
& = total energy density
& = gas-dynamic energy
&' = thermal energy
&F = kinetic energy
&F = clectromagnetic field energy
1.2 Defining and Constituting Relation-
ships.
1.2.1 Electromagnetic relations.
CZMQEU =1
S:=L1lExB
Ho
E=E+vxB=nJ
1.2.2 Mechanical relations.
= %(Vv +vvT)
= AV - vi+2ue
= 7%u (assuming trace(g) = 0)
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I=-pi+a

T := c(EE — $E%)) + ;- (BB — §B%)
1.2.3 Thermodynamic relations.

p=pRT

g =2y

St

&l = €5 E° + mB

q= —kVT

E=¢64+¢&1

£ =&t &R,

1.3 Definitions of Symbols and Operators.

e ¢ = permutation tensor

e ;= %

o d; := 0; + v -V = convective derivative.

o3 == a — (o + V- (va)) = conservative
derivative.

1.4 Full One-fluid Plasma Balance Laws.

The full one-fluid plasma equations are a system of 11
equations which specify the evolution of electromag-
netic field, mass density, momentum, and energy.

1.4.1 Electromagnetic evolution.

Maxwell’s 6 evolution equations with the constraints
that must be maintained by physical solutions are:

B E 0 B 0
o] o7 L] = [ ] o [e] = 5]
1.4.2 Material balance laws (gas-dynamics)

The material balance laws are simply statements of
conservation of mass, momentum, and energy. See ap-
pendix A for a derivation of the electromagnetic part.

p 0 0 0
8 [(pv)| + 0, | £S| +V- -z +V-|-T| =0
£ & -T-v+q S
p 0 0
ie. 8, (pv) + 0 eEx B +V-ipd| =
7+ gpv? SE + 5. B PV
0 0
2 2 .
v. o +V- |eo(BE—Z9) + L(BB - £-9)
o-v+krVT —iExB

2 Conservation laws for MHD.

The equations of MHD (Magnetohydrodynamics) are
an approximation to the full one-fluid plasma equa-
tions above. The electric field E is eliminated by dis-
carding O;E (Ampere’s magnetostatic approximation)
and quadratic order electric field terms.

We will put each law in the form:
O¢(conserved quantity) + V - (hyperbolic flux)
=V - (parabolic flux).

2.1 Magnetic field.

The MHD equation for the evolution of B is obtained
by using Ampere’s law and Ohm’s law in Faraday’s
law to eliminate E and J:

OB+VXxE=0

B+Vx(Bxv+E)=0

OB+V-(VB-Bv)=-Vx(E)=V-(c-E).
Note: —V x (pJ) = =V x (’r/“iav x B) -

= V- (n;5(VB" - VB)).
2.2 Mass balance.
Op+V-(pv)=0.

2.3 Momentum balance.

For MHD we ignore second-order terms in the electric
field. This means that we discard the momentum of
the electromagnetic field and retain only the magnetic
terms in the electromagnetic stress tensor.
So the electromagnetic stress tensor is:

7= L(BB - 15%)

To see that we can discard the momentum of the elec-
tromagnetic field:

O(E x B) = (,E) x B+ E x (;B)
=(E)xB-ExVxE=0

Decompose the stress tensor into its diagonal compo-
nent (pressure) and its traceless component (viscous
stress): 7 = pd + g.

Now substitute into the general momentum balance

3t(pv) + 0 (ccExB) =V -2+ V- -T.

Splitting the stress tensor into hyperbolic (pressure)
and parabolic (viscous stress tensor) parts, we express
conservation of momentum as:
|
Opv +V - (pvv+ (p+ 21%32)27 H—BB) =V-.g

0

2.4 Energy balance.

Using Ohm’s law and Ampere’s law we can express the
Poynting vector in terms of the magnetic field:

ExB=(E+Bxv)xB
=E xB+ (B>v-BB-v)

Again we discard the electric field term from t]
tromagnetic energy since it is second-order:
& =B,

1o

Invoke the relations
T =-pd+gand
q=—-kVT.

Substituting into the general energy balance,
§E+0E +V-(GEEXB) =V (z-v) =V

5t<‘3+2—‘1m8tB2+V~ﬁ(B2v7BB~v)+V~(E
=V-(g-v)=V-(pv)+ V- (kVT)

Thus the energy balance with electric field exp
and hyperbolic and parabolic terms separated

OE+V - ((E+p+ 35 B)v - LBB v) =
V~(g-v)+V-(KVT7E’><B)

where £ = £ + %pv2 + ﬁBZ is the total ener

Assuming the ideal gas law, £ = % Note tl

—nIxB & —1)-(VxB) xB = 1,-(V(387)) -
=n;-V-(3B% - B-B).

2.5 Full MHD system.

Thus, the full system of viscous, resistive MHI
tions for an ideal conducting gas is

P v
o || g | v eps e
ot | & v(€+p)—u—OBB~v
vB — Bv

hyperbolic flux

0
a

g.v+<nj7];7E'xB>

—-Vv.

Hien

parabolic flux
and V-B=0,
where p is the mass density, v is the fluid
field, £ =&+ zl+uB2 is the total energy (gas-d
energy plus magnetic energy), B is the magnet
and p:=p+ 2}7032 is the total pressure (gas-d
pressure plus magnetic pressure). The gas-d
pressure is p = (y —1)(€ — %pv2), where 7 is tl
of specific heats.




3 Two-fluid plasma equations.

The two-fluid plasma equations consist of 16 evolution
equations which specify balance laws for electromag-
netic field and the mass, momentum, and energy of
each species of the plasma. They model the plasma as
a negatively charged fluid of electrons and a positively
charged fluid of ions which occupy the same space and
interact with the electromagnetic field. In the colli-
sionless case, it is assumed that the two fluids pass
through one another freely with no direct interaction,
and therefore influence one another only by means of
their mutual interaction with the electromagnetic field.
In more general models the two fluids may exert a drag
force on one another.

Our general two-fluid model consists simply of gas dy-
namics for each of the two fluids, coupled to one an-
other by drag force and heat transfer and coupled to
Maxwell’s equations by means of source terms consist-
ing of the Lorentz force, the charge density, and the
current and displacement currents.

The 10 gas dynamics equations in generality are:

Ps PsVs 0
O | psvs| + V- |psvsvs| =V - z,
gs 'gsvs Ls Vs — Qs
advection
0 0
+ R, + ocsE+Js xB
Ry vs + Qs Js E

interactive source electromagnetic source

where s is the species index (i for ion, e for electron),
p denotes mass density, v is the fluid velocity, € is the
gas-dynamic energy, 7 is the stress, q is the heat flux,
o is the charge densit?, J is the current, Ry is the drag
force on species s from the other species, and @ is the
heat transfer to species s from the other species.

Maxwell’s 6 evolution equations with constraints are:

QiR S BRI

€0

where E and B are the electric and magnetic fields,
o= ,0s=) 4 3—55;)5 is the charge density, and J =

Ssds =2, 7‘,1—fspﬂvS is the current density.

We remark here that Maxwell’s evolution equations
can be viewed as a conservation law for B and a bal-
ance law for E (with current providing a source term),
because a curl, like any spatial differential operator,
can be viewed as a divergence: V x v = J;je;€; v =
-V (e-v).

The 10 gas dynamics equations expressed with
hyperbolic and parabolic flux terms and with in-
teractive and electromagnetic source terms are:

Ps PsVs 0

Oy |psVs| + V- |psVsVs +psd| =V - g,
&s Vs (s +1s) g, Vs + ks VT
hyperbolic flux parabolic flux

0 0
+ R, + | ps(E+ v, x B)
R vs + Qs %psvs -E
interactive source electromagnetic source

where 2 denotes charge-to-mass ratio, p is the pres-
s

sure, ¢ is the viscous stress, T' is the temperature,

and  is the heat conductivity.

Typically Ry is taken to be proportional to the density
of each species and the difference in velocity between
the two species. @ is similarly proportional to the
density of each species and the difference in tempera-
ture between them.

In the collisionless model, the interactive source is as-
sumed to be zero. In the ideal model, the parabolic
flux is also assumed to be zero. In the absence of
shocks I think that we can then replace energy conser-
vation with entropy conservation:

diS; = 0, where S, := In(psps ")

3.1 One-fluid from two-fluid.

To obtain the full one-fluid model from the two-fluid
model, we simply sum the gas-dynamics balance laws
over all species for each conserved variable.

(So let p == 37 ps, (pv) = o, (pV)s, € = 30, &s,
Ti= ZS;S, q:=>,qsand J:=>_J,.)

Interactive source terms will cancel, since they sim-
ply serve to exchange momentum and energy between
species. The species index s will effectively disappear,
except for quadratic deviations from the mean aris-
7ing from the nonlinear term labeled “advection”; these
nonlinearities can be absorbed into the higher-order
moments (the stress tensor in the case of momentum
conservation; the heat flux in the case of energy con-
servation). The full one-fluid model is only an approxi-
mation to the two-fluid model, because it assumes that
nice constitutive relations for these higher-order mo-
ments still hold after absorbing these nonlinearities.
[For details see my summary, “A book-keeping deriva-
tion of 1-fluid equations from multi-fluid plasma equa-
tions”.]

A Derivation of basic laws.

A.1 Conservation of momentum.

The electromagnetic force on a particle of charge ¢
and velocity v is given by: ¢(E + v x B). This means
that the electromagnetic force density on a continuum
of net charge density o and net current J is given by
F = oE+J x B. (To see this, let n be the number
density and v be the velocity of a particular species
of charge ¢q. Then the charge density of this species is
o = nq and the current of this species is the charge
flux, J = ov =ngv.)

Conservation of momentum tells us that:
Si(pv) =F+V -z

We wish to write the force of the electromagnetic field
on the particles as the time derivative of some func-
tion of electromagnetic field (which we will regard as
electromagnetic momentum) plus a spatial derivative
of another function of electromagnetic field (which we
will regard as flux of electromagnetic momentum).

To express the force purely in terms of electromagnetic
field quantities, use the nonhomogeneous Maxwell
equations to eliminate the charge density and the cur-
rent: F = ¢o(V-E)E + (;5V x B — ¢9,E) x B.

Then use parts to get a time derivative of a single
quantity. —(0;E) x B=—0;(E x B) + E x 9;B.

The quantity ¢gE x B = C%S, where S is the Poynting
vector, is what we identify as the momentum of the

field.

Now we’ll use the inhomogeneous equations to make
everything else look like the spatial derivative of a sin-
gle quantity. Faraday’s law gives E x ;B = —E X
(V x E). Now we try to write everything except the
time derivative as the divergence of some tensor. For
the electric field terms we get:
(V-E)JE-EXx (VxE)
=(V-E)E— (VE)-E+E- (VE)
=V-(EE) - V(3E?)
For the magnetic field terms we get (since V- B = 0):
(VxB)xB =B-VB-V(3B?) = V-(BB-1B%).

So the force of the field on the charges is
F=-0(%8)+V T,
where T := ¢o(EE — 3 E°9) + ;-(BB — 3B%)
is the Maxwell stress tensor.

8i(pv) +0(58) =V -T+V-z

A.2 Conservation of energy.

The power (rate of work) of an electromagnet
on a moving charged particle is (force) - (velo
¢(E+v x B)-v =g¢gv-E. This means that the
density on a net current J is given by J - E.
this, let n be the number density and v be the ¥
of a particular species of charge q. Then the
of this species is the charge flux, J = ngv.)

Conservation of energy tells us that:
58=J-E+V-(z-v)-V-q

‘We wish to write the work of the electromagne
on the particles as the time derivative of som
tion of electromagnetic field (which we will re;
electromagnetic momentum) plus a spatial de
of another function of electromagnetic field (w]
will regard as flux of electromagnetic energy).

To express the work purely in terms of elect
netic field quantities, use the completed Ampe:
to eliminate the current, and then use parts an
day’s law to separate out a time and spatial der

~J-E=¢(0E-c2VxB)-E
=€ (O (3E?) — *E -V x B)
=¢d(3E) — ;=(B-VxE-V-(E xB))
=€ (3E%) + 1-0,(3B%) + -V - (E x B)

Ho

1 11 1
= 0t(50(§E2) + %(532)) +V- (%E x B
N——’

Call &1 Call S

‘555+015f+V-S:V<(;-v)fv-q‘

B Ohm’s law.

Ohm’s law specifies the electric field E' := E +
in the reference frame of the fluid. (In the :
imation of Galilean relativity, the transforma
electromagnetic field from the fixed reference
to a reference frame moving at velocity v is g
B - B, E— (E+vxB.)) Assuming qu
trality and vanishing electron mass implies t]
electron velocity in the reference frame of the
we := —J/(en). Then conservation of moment
electrons yields the generalized Ohm’s law:

E'=nJ+ % xB- ¥4 2 (9,J+ V- (Jv-

en

Note that E'— % x B is the electric field in the re
frame of the electrons. The final term represe
inertia.



