
Notes on Curves (Chapter 13, Calculus of Vector-Valued Functions)

by Alec Johnson

fall, 2009

Chapter 13 studies the properties of vector-valued
functions, i.e. functions from the real line R to Rn.
We will use r(t) = 〈x(t), y(t), z(t)〉 to stand for such
a vector-valued function into 3-space R3.

1 Calculus of vector-valued func-
tions.

The calculus of vector-valued functions is very sim-
ple. The derivative is just the derivative of the com-
ponents:

r′(t) = lim
dt→0

r(t+ dt)− r(t)
dt

= 〈x′(t), y′(t), z′(t)〉.

The properties of derivatives are just like for single-
variable calculus. For example, we have the product
rules:

(sr)′ = s′r + sr′,

(r1 · r2)′ = r′1 · r2 + r1 · r′2,
(r1 × r2)′ = r′1 × r2 + r1 × r′2.

2 Parametrized curves

A curve C in space is specified by a vector-valued
function r(t) from the real line R to space R3. The
function r(t) is called a parametrization of C. We
think of t as time. As the parameter t advances,
r(t) traces out the curve in space and determines
its orientation. (The orientation of a curve is the
direction in which it is traversed. A given curve has
one of two possible orientations.)

There are many ways to parametrize a given curve.
Let t̃(τ) be a smooth one-to-one function. Then
r̃(τ) := r(t̃(τ)) is a new parametrization, called a
reparametrization of the same curve C, in terms

of a new “time” τ . The chain rule works component-
wise, and it tells us (in Newton’s “function” nota-
tion) that

r̃′(τ) = r′(t̃(τ))t̃′(τ). (1)

3 Quantity notation.

When we are doing geometry we will often think in
terms of physical quantities (the way physicists like
to think) rather than in terms of functions (the way
mathematicians like to think). In quantity notation,
to indicate a function we write something like r(t),
i.e., the quantity named r as a function of the quan-
tity named t. In this notation, r(τ) and r(t) are two
different functions. To map the function notation
above to the quantity notation here, we have

t̃ := t(τ),
r̃ := r(τ),
r := r(t).

In this notation, we will not distinguish between r̃
and r or between t̃ and t, since they represent the
same physical quantity. In Leibnitz’s “quantity” no-
tation the chain rule (1) becomes:

dr
dτ

=
dr
dt

dt

dτ
.

Here dt
dτ stands for the derivative of the quantity

named t as a function of the quantity named τ , and
dr
dt stands for the derivative of the quantity named
r as a function of the quantity named t. This nota-
tion does not make explicit the point where each
quantity or derivative is evaluated. It is under-
stood that each quantity is evaluated at the appro-
priate/natural/obvious point.

In quantity notation, when we want to specify where
a function is evaluated we can use a vertical bar.

1



We write r(t)
∣∣
t=t1

, or simply r|t=t1 or r(t = t1), to
represent the quantity named r as a function of the
quantity named t evaluated at the point t1.

So to make the Leibnitz chain rule more explicit we
can write:

dr
dτ

∣∣∣∣
τ=τ1︸ ︷︷ ︸

r̃′(τ1)

=
dr
dt

∣∣∣∣
t=t(τ1)︸ ︷︷ ︸

r′(t(τ1))

dt

dτ

∣∣∣∣
τ=τ1︸ ︷︷ ︸

t′(τ1)

.

Quantity notation allows us to blur the distinction
between the name of the input to a function and the
point where we are evaluating the function. So r(t)
may be used to mean r(t = t), i.e. the quantity r as
a function of the quantity t evaluated at the point
named t. Similarly, dr

dτ is often understood to mean
dr
dτ

∣∣
τ=τ

, where we use τ to represent both the name
of a quantity and a point where it is evaluated.

It is important for you to become proficient in trans-
lating between the more efficient quantity notation
of the physicists and the more precise function no-
tation of the mathematicians.

4 Curves

The goal of Chapter 13 is to study the geometry of
curves. Geometry is the study of shape. Shape is a
property of an object that is independent of the co-
ordinates or parametrization one uses to describe it.
For example, we will write down a formula for the
radius of curvature of a curve. This formula should
give the same answer no matter what parametriza-
tion or coordinate system we use to describe the
curve.

Curved shapes are smooth. Calculus is basically the
study of things that are smooth. Smooth means
differentiable. So we use derivatives, i.e. rates of
change, to study geometry.

We define the velocity v(t) to be the rate of change
of position: v(t) := dr

dt = r′(t) = 〈x′(t), y′(t), z′(t)〉.
We define the acceleration to be the rate of change
of velocity: a(t) := dv

dt = r′′(t) = 〈x′′(t), y′′(t), z′′(t)〉.

The starting point for understanding geometry is the
notion of arc length and an arc-length parametriza-
tion. Let C be a curve with parametrization r(t).

Pick a base time t0. This defines a base point
r0 := r(t0). Let s(t) denote the distance traced along
the curve by r(t) from time t0 to time t. The speed is
ds
dt , i.e., the time-derivative of arc length. But speed
is also |r′(t)|, i.e., the magnitude of the velocity. So
to find s(t) we just solve the differential equation
ds
dt = |r′(t)|. We can solve for s by integrating:

s(t1)− s(t0) =
∫ s(t1)

s(t0)
ds =

∫ t1

t0

ds

dt
dt, i.e.,

s(t) =
∫ t

t0

|r′(t)|dt

Isaac Newton put a dot over a letter to denote the
derivative with respect to time. So arc length is s,
but speed is ṡ. Note the dot!

To summarize:

• A dot over a letter means the derivative with
respect to t (“time”),
• r(t) = position as a function of time,
• v := ṙ = velocity,
• a := v̇ = r̈ = acceleration,
• s is distance along the curve (measured from

some base point, and
• ṡ := ds

dt = |v| is the speed.

So here’s the recipe to get an arc-length parametriza-
tion:

1. Find the speed ṡ =
√

r′(t) · r′(t).

2. Antidifferentiate to get s(t), arc length as a
function of time.

3. Invert to get t(s), time as a function of arc
length.

4. Plug t(s) into r(t) to get the arc length
parametrization r(t(s)).

The essential property of an arc-length parametriza-
tion is that the speed is 1 :∣∣∣∣drds

∣∣∣∣ =
∣∣∣∣drdt
∣∣∣∣ · ∣∣∣∣ dtds

∣∣∣∣ = 1,

since by definition ds
dt =

∣∣dr
dt

∣∣. In other words:

dr
ds
· dr
ds

= 1 , (2)
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which is a useful result and a way to check your
reparametrization.

For a given oriented curve C with base point r0, the
arc-length parametrization will always be the same,
regardless of the initial choice of parametrization.
So we will define geometric quantities in terms of the
arc-length parametrization, and this guarantees that
our formulas are independent of parametrization.

5 First derivatives: velocity and
unit tangent.

The velocity vector v(t) points in the direction of
the curve. We call the unit vector in the direction
of v the unit tangent vector T̂ := v̂, because it
points in the direction of a tangent line to the curve.
The velocity vector is its magnitude (the speed ṡ))
times its direction T̂:

v = ṡT̂ (3)

This is the geometric equation for first derivatives.
A quick way to get this equation is to use the chain
rule to differentiate position:

v =
dr
dt

=
dr
ds︸︷︷︸
T̂

ds

dt︸︷︷︸
ṡ

(4)

If we parametrize by arc length, the speed is 1.

Exercise. Let r(t) = 〈3 cos(t), 3 sin(t), 4t〉. Find an
arc-length parametrization of r(t). Verify that in the
arc-length parametrization the speed is 1.

6 Second derivatives: accelera-
tion and curvature.

Differentiating both sides of equation (3) with re-
spect to time gives acceleration in terms of geometric
quantities:

a =
dT̂
dt
ṡ+ T̂s̈ (by the product rule)

=
dT̂
ds

ds

dt
ṡ+ T̂s̈ (by the chain rule) (5)

The quantity dT̂
ds represents the rate of change of

direction with respect to arc length. It is defined

in terms of the arc length, so it has a geometrical
meaning. We call it the curvature vector ~κ, because
it points in the direction in which the curve is curv-
ing.

If we differentiate equation (2) (with respect to s)
and use the product rule, we get:

2
dr
ds︸︷︷︸
T̂

· d
2r

(ds)2︸ ︷︷ ︸
~κ

= 0,

which says that the curvature vector is always per-
pendicular to the unit tangent vector.

κ := |~κ|, the magnitude of the curvature vector,
is called the curvature. It represents the rate of
change of direction with respect to arc length. The
reciprocal of the curvature is called the radius of
curvature, R = 1/κ. The direction of the curva-
ture vector, N̂ := ~κ/|~κ|, is called the unit normal to
the curve. So we can rewrite equation (5) as:

a = ~κṡ2︸︷︷︸
aN

+ T̂s̈︸︷︷︸
aT

,

where aT and aN denote the tangential and normal
components of the acceleration.

In summary:

• T̂ := dr
ds = dr

dt
dt
ds = v

|v| is the unit tanget vector,

• ~κ := dT̂
ds is the curvature vector,

• κ = |~κ| is the curvature, and
• N̂ := ~κ

|~κ| is the unit normal vector (i.e. the di-
rection of the curvature vector),
• ~κ = κN̂, and
• R := 1/κ is the radius of curvature.

7 Finding geometric quantities
without reparametrizing

Reparametrizing is hard. With the exception of
some very nice curves (e.g. helixes), most curves
do not have an elementary arc-length parametriza-
tion. Fortunately, you can calculate all the geometric
quantities (unit tanget, speed, tangential and nor-
mal components of acceleration, curvature, and unit
normal) simply in terms of v and a without ever
having to write down an arc-length parametrization
explicitly. Here’s how:
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1. Compute the velocity v = r′(t).

2. Compute the speed |v| =
√

v · v.

3. Compute the unit tangent T̂ = v
|v| .

4. Compute the acceleration a = v′(t).

5. Compute the scalar tangential acceleration
aT = a · T̂.

6. Compute the vector tangential acceleration
aT = aT T̂.

7. Compute the normal component of the acceler-
ation aN = a− aT .

8. Compute the curvature |~κ| = |aN |
|v|2 =

√
|a|2−a2

T

|v|2 .

9. Compute the radius of curvature R = 1/|~κ|.

10. Compute the unit normal N̂ = aN
|aN | .

This method would work in n-dimensional space
where n is any number. But in 2- and 3-dimensional
space there are shortcuts.

In three dimensions the cross product provides a
shortcut to find the magnitude of the curvature.
Since aT is parallel to T̂, aT × T̂ = 0, so:

|aN | = |aN × T̂| = |(aN + aT )× T̂|,

so

|~κ| = |a× v|
|v|3

.

In two dimensions we can simplify further. Let
r(t) = 〈x(t), y(t)〉. We regard two-dimensional space
as a slice of three-dimensional space where the third
component is zero. This is the natural embedding
of two-dimensional space in three-dimensional space.
So we write r = 〈x, y, 0〉. Then v = 〈ẋ, ẏ, 0〉 and
a = 〈ẍ, ÿ, 0〉, so v × a = 〈0, 0, ẋÿ − ẍẏ〉, so

|~κ| = |ẋÿ − ẍẏ|√
ẋ2 + ẏ2

3 .

In three dimensions there is also a shortcut to find
the unit normal N̂. The unit binormal B̂ is defined

so that T̂, N̂, B̂ is an ordered triple of three mutu-
ally orthogonal vectors with right-hand orientation.
That is, B̂ = T̂× B̂. T̂ and N̂ span the same plane
as v and a. So v × a points in the same direction
as B̂. So (v × a) × v (which you can show equals
(v ·v)a− (v ·a)v) points in the same direction as N̂.

8 Exercises

1. Radius of curvature of a circle. Since the
radius of curvature already has a definition for
circular paths, we need to show that our new
definition of curvature agrees with the old defi-
nition.

(a) Write a parametrization r(t) of a circle of
radius R. (Hint: a parametrization of the
unit circle is r(t) = 〈cos(t), sin(t)〉.

(b) Calculate the curvature κ.

(c) Show that radius of curvature is indeed
1/R.

2. Arc-length parametrization of a helix.
A helix is a spiral. It looks like a slinky.
It is produced by circular motion in a plane
combined with linear motion in the perpen-
dicular direction. For example, let r(t) =
〈R sin(t), R cos(t), at〉.

(a) Find the velocity and speed.

(b) Find an arc-length parametrization of r.

(c) Find the unit tangent.

(d) Find the acceleration.

(e) Find the tangential and normal compo-
nents of the acceleration.

(f) Find the curvature and radius. Does you
answer agree with the radius of a circle?

3. Components of acceleration. Let r(t) =
〈ln(cos(t)), t〉. At time t = π/3 find:

(a) the velocity,

(b) the unit tangent,

(c) the acceleration,

(d) the components of the acceleration parallel
and perpendicular to the unit tangent,

(e) the curvature, and

(f) the unit normal.
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