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1 Overview

When we studied integration on curves we began
with line integrals, i.e. integration of scalar fields
along curves, and then quickly moved on to our
real interest: work integrals (and flux integrals) of
vector fields along oriented curves.

In the same way, in studying integration on surfaces
we will begin with integration of scalar fields over
surfaces, and then quickly move to our real interest:
flux integrals of vector fields over oriented surfaces,
which I will refer to as surface flux integrals or sim-
ply flux integrals.

Theoretically, surface flux integrals lay the ground-
work to generalize Green’s theorem (i.e. the fun-
damental theorem of calculus) from two to three
dimensions. In practice, however, learning to cal-
culate general surface flux integrals is largely in-
dependent of learning the generalization of Green’s
theorem, just as learning to calculate work integrals
was largely independent of learning to use poten-
tials and Green’s theorem. In a sense, the point of
the multivariable versions of the fundamental the-
orem of calculus is to learn how to convert difficult
integrals into easy integrals, and in practice the sim-
plied integral can often be calculated without doing
any parametrization.

2 Integral of a scalar field over a
surface

The integral of a vector field f(r) over a surface S is
denoted

˜
S fdA. It is defined by chopping up the

surface into little pieces with area dA and summing
up the value f on each piece times the area dA.
You can think of f as a density per surface area.

In general, to actually calculate a surface integral
you must use a parametrization of the surface. A
parametrization of a surface is a smooth one-to-one
function from a region of the plane to a surface
in three-dimensional space. We will typically de-
note the parametrization by r(u, v) and say that

it maps a region R of the u-v plane (called the
domain of the parametrization) to a surface S in
three-dimensional space.

Using a parametrization will allow us to calcu-
late a surface integral using an old-fashioned two-
dimensional integral over the region R in the u-v
plane. To do this, we chop up the region R into
small rectangles. The parametrization maps each
rectangle to a parallelogram on the surface S. The
area of that parallelogram is dA, and we will cal-
culate it using the cross product. (Recall that the
area of the parallelogram spanned by two vectors v
and w is ‖v ×w‖.) Here’s the formula:
¨

S
fdA =

¨
R
f(r(u, v))

∥∥∥∂r
∂u
× ∂r
∂u

∥∥∥ du dv.
In this formula, du and dv are the lengths of the
sides of the rectangle, ∂r

∂u du and ∂r
∂v dv are vectors

that span the parallelogram, and ‖ ∂r
∂u×

∂r
∂u‖ du dv is

the area dA of the parallelogram.

For a random surface these integrals usually cannot
be found in closed form, because the magnitude of
the cross product involves a square root. The exer-
cises we give are special cases designed so that you
can do the integrals.

Exercise. Find the surface area of a sphere of
radius R0. Hint: Parametrize using cylindrical or
spherical coordinates. Answer: 4πR2

0.

3 Flux of a vector field through a
surface

When we studied curves in two dimensions we de-
fined the flux of a vector field F across a curve C
with normal vector n̂ to be the rate of flow across
the curve:

´
C F·n̂ ds, where ds denotes infinitesimal

arc length.

The flux of a three-dimensional vector field F(r)
across a surface S with unit normal vector n̂ is de-
fined to be

˜
S F · n̂ dA, where dA denotes infinites-

imal surface area. (Remark: some people write
dA := n̂ dA and so denote the flux by

˜
S F · dA.)

To actually calculate a flux integral you generally
need to parametrize the surface. Let r(u, v) be a
parametrization of S with domain R. We again
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chop up R into small rectangles with sides du and
dv. Each such rectangle gets mapped to a parallel-
ogram (spanned by ∂r

∂u du and ∂r
∂v dv). The normal

vector n̂ is perpendicular to this parallelogram, and
the area dA is the area of the parallelogram. That
is, n̂ is plus or minus the direction vector of the
cross product of the sides, and dA is its magni-
tude. So n̂ dA = ± ∂r

∂u ×
∂r
∂v du dv. We say that

the parametrization is positively oriented with
respect to n̂ if ∂r

∂u ×
∂r
∂v is in the same direction

as n̂; otherwise the parametrization is negatively
oriented. So assuming that r(u, v) is positively
oriented with respect to n̂,
¨

S
F · n̂ dA =

¨
R

F(r(u, v)) · ∂r
∂u
× ∂r
∂v

du dv.

When you calculate a surface integral you must al-
ways make sure that the parametrization is posi-
tively oriented, i.e., that the cross product of par-
tial derivatives of the parametrization points in the
correct direction. Recall that the cross product is
anticommutative (i.e. v×w = −w×v), so if ∂r

∂u×
∂r
∂v

points the wrong way you can just reverse the order
of u and v to get a parametrization for which the
cross product of the partial derivatives points in the
proper direction. (Of course you can also just com-
pute the flux with the wrong orientation and then
slap a minus sign on your answer.)

Exercise. Find the flux of the vector field F =
(3y, 3, 4x) through the surface parametrized by
r(u, v) = (u2, v, uv) where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 2.
(Assume that n̂ agrees with the parametrization.)
Solution: ∂r

∂u = (2u, 0, v) and ∂r
∂v = (0, 1, u). So

∂r
∂u ×

∂r
∂v = (−v,−2u2, 2u). F(r(u, v)) = (3v, 3, 4u2).

So F · ∂r
∂u ×

∂r
∂v = −3v2−6u2 +8u3. So

˜
F · n̂ dA =´ 2

v=0

´ 1
u=0(−3v2 − 6u2 + 8u3) du dv = −8.

4 Orientation (and summary of
curve and surface integrals)

4.1 Scalar field integrals. The issue of ori-
entation does not arise when you integrate a scalar
field. The line integral
ˆ

C
f ds =

ˆ t1

t0

f(r(t))
∥∥∥dr
dt

∥∥∥ dt
gives you the same value regardless of the direction
in which the parametrization traverses the curve,

because of the absolute value sign. Similarly, the
surface integral
¨

S
fdA =

¨
R
f(r(u, v))

∥∥∥∂r
∂u
× ∂r
∂u

∥∥∥ du dv
gives the same value regardless of which side of
the surface the cross product of partial derivatives
points toward. In both cases the absolute value
eliminates the issue of orientation and tends to
makes the integral difficult to calculate.

4.2 Vector field integrals and Orientation.
In contrast, whenever you integrate a vector field
you must consider the issue of orientation. The
work integral
ˆ

C
F · dr =

ˆ t1

t0

F(r(t)) · dr
dt
dt

is negated if the parametrization is reversed because
dr = dr

dt dt is negated. Similarly, in two dimen-
sions when you parametrize the line flux integral´
C F · n̂ ds, the element n̂ ds is the element dr =

(dx, dy) rotated 90 degrees clockwise, (dy,−dx), or
counterclockwise, (−dy, dx). You must figure out
which way to rotate dr to point in the same direc-
tion as n̂. So:

ˆ
C

F · n̂ ds = ±
ˆ t1

t0

F1 dy − F2 dx

where the value of ± depends on n̂ and the ori-
entation of the parametrization; it is positive if
n̂ · (dy,−dx) is positive.

Exercise. Find the outward flux of the vector field
F = (x, 0) out of the elliptical region satisfying x2+
y2/4 ≤ 1. Answer: 4π.

Likewise, in three dimensions the surface flux inte-
gral
¨

S
F · n̂ dA = ±

¨
R

F(r(u, v)) · ∂r
∂u
× ∂r
∂v

du dv,

where the value of ± is positive if ∂r
∂u ×

∂r
∂v points in

the direction of n̂, else negative.

Exercise. Find the outward flux of the vector field
F = (x, y, z) through the walls of the solid cylinder
which is the solution set to 0 ≤ z ≤ 1, x2 + y2 ≤ 1.
Answer: 3π.
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