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Green’s circulation and divergence
theorems for integrals in the plane
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1 Overview

This is the second part of a three-part exposition of
integral vector calculus. In the first part we stud-
ied work integrals along paths and stated that the
work integral of the gradient of a potential along an
oriented path is its change in value. In this second
part we study integrals around closed loops in the
plane. In the third section we will generalize this
result by studying integrals over arbitrary surfaces
in three-dimensional space.

2 Circulation integrals

A circulation integral is simply a work integral
around a closed curve (i.e. a loop). So, as before, we
let C denote an oriented curve with parametrization
r(t), where t runs from t0 to t1. To assert that a
curve is closed, we add the requirement that r(t0) =
r(t1). We again denote the vector field by F(r) =
(M(x, y), N(x, y)). When we integrate around a
closed curve, we draw a circle through the integral
to emphasize that the curve is a loop:

˛
C

F · dr =
˛
C
M dx+N dy

=
ˆ t1

t0

M
dx

dt
+N

dy

dt
dt.

We will usually be concerned with simple closed
curves. A simple closed curve is a closed curve that
does not intersect itself. (That is, r(t) is one-to-one
except for the endpoints.) A simple closed curve
in the plane is the boundary of a simply connected
region, i.e a region consisting of only one piece with
no holes.

Since the integral goes in a circle, it doesn’t actually
matter where we start and end, but the direction of
the integral matters. If we reverse the orientation
of the parametrization of the loop the integral is

negated. Therefore we usually indicate the direc-
tion of orientation of the integral with a counter-
clockwise or clockwise arrow. Taking r(t) to be a
counterclockwise parametrization,
‰
C

F · dr =
ˆ t1

t0

M
dx

dt
+N

dy

dt
dt

= −
ˆ t0

t1

M
dx

dt
+N

dy

dt
dt

= −

C

F · dr.

Actually, nothing in this argument depends on the
fact that the curve is closed, and in general we can
say that reversing the direction of parametrization
of a curve negates work integrals along it. Loop
integrals in the x-y plane are conventionally coun-
terclockwise (the same direction in which the unit
circle is traversed by the standard parametrization
(cos(t), sin(t)).

2.1 Circulation integral of a conserva-
tive vector field is zero.

If F has a potential, i.e., F = ∇φ, then the integral
is extremely simple:
˛
C
∇φ · dr =

˛
C

∂φ

∂x
dx+

∂φ

∂y
dy =

˛
C
dφ = 0,

since φ has no net change around the loop. Note
that the following statements are equivalent:

1. F is a conservative vector field,
2. F has a potential,
3. work integrals of F are path-independent, and
4. circulation integrals of F are zero.

To see that the last two are equivalent, the difference
between the integrals along two different oriented curves
C1 and C2 from an initial point r0 to a final point r1 can
be thought of as the integral along C1 followed by the
integral along the reversal of C2:

´
C1

F ·dr−
´
C2

F ·dr =´
C1

F ·dr+
´
−C2

F ·dr =
´
C1−C2

F ·dr, where negating a
path means reversing its direction and adding two paths
means joining them end to end.

2.2 Green’s circulation theorem

Even if F does not have a potential, the fact that
the curve is closed will allow us to find the work
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integral in terms of an integral of a derivative over
the region it encloses. This relationship is called
Green’s theorem, and it is the fundamental theorem
of calculus relating loop integrals and area integrals
in the plane.

2.3 Derivation of Green’s theorem for a
rectangle

To discover Green’s theorem, consider the sim-
ple case of a work integral around a rectangle.
Let R be the rectangle [x1, x2] × [y1, y2]. We de-
note the boundary of R by ∂R. (This notation is
meant to suggest the fact there is a fundamental
relationship between boundaries and derivatives.)
The work integral of some vector field F(r) =
(M(x, y), N(x, y)) around ∂R is
‰
∂R
M dx+N dy =

‰
∂R
M dx+

‰
∂R
N dy.

This integral is the sum of the work along each of
the four directed line segments that cycle around
∂R. Along the vertical segments dx is zero, and
along the horizontal segments dy is zero. Along the
vertical segments x is frozen and we can use y as
the parameter. Since the path is counterclockwise,
y goes from low to high when x is high (x = x2)
and from high to low when x is low (x = x1). So:
‰
∂R
N dy =

ˆ y1

y=y0

N(x2, y) dy +
ˆ y0

y=y1

N(x1, y) dy

=
ˆ y1

y=y0

N(x2, y) dy −
ˆ y1

y=y0

N(x1, y) dy

=
ˆ y1

y=y0

[N(x2, y)−N(x1, y)] dy.

If we freeze the value of y then N(x, y) is a func-
tion of x and N(x2, y) − N(x1, y) is the differ-
ence in the value of this function at two points.
But the fundamental theorem of calculus says that
the difference of the value of a function at two
points is the integral of its derivative over the in-
terval between the points, so [N(x2, y)−N(x1, y)] =´ x1

x=x0

∂
∂xN(x, y) dx. Therefore,
‰
∂R
N dy =

ˆ y1

y=y0

ˆ x1

x=x0

∂

∂x
N(x, y) dx dy.

Exercise. Do a similar calculation to show that�
∂RM dx =

˜
R−

∂
∂yM(x, y) dy dx. Why is there a

minus sign? (Hint A: when you parametrize in the
counterclockwise direction, dy is positive when x is
high, but dx is positive when y is low. Hint B: you
can make use of symmetry to swap x and y in the
formula

�
∂RN dy =

˜
∂
∂xN(x, y) dx dy, but when

you do so you must also reverse the direction of
circulation to maintain full symmetry:

∂R
M dx =

¨
∂

∂y
M(x, y) dx dy.)

So we have proved (for a rectangle) the two ingre-
dients of Green’s theorems:

1.
�
∂RN dy =

˜
R
∂N
∂x dx dy

2.
�
∂RM dx =

˜
R−

∂M
∂y dy dx

Putting these two ingredients together, we get
Green’s circulation theorem:

�
∂RM dx+N dy =

˜
R
∂N
∂x −

∂M
∂y dx dy

A summary mnemonic: for dy terms in a counter-
clockwise circulation integral you can insert “can-
celing” dx and ∂x, but for dx terms you must
change the sign when you insert “canceling” dy and
∂y (because dx is “negative on the high side”).

2.4 Green’s theorem for closed curves

Green’s theorem actually holds for any simple closed
curve. Let’s see why. First let’s show that it holds for
any a simply connected region R that is made up of tiled
(adjacent, nonoverlapping) rectangles. Green’s theorem
holds on each of the little rectangles. Adding up the area
integrals for the small rectangle gives an area integral for
R. So we just need to show that when you add up the
circulation integrals around the rectangles you similarly
get the circulation integral around R. The circulation
integrals for two adjacent rectangles will traverse their
shared edge in opposite directions. But when you reverse
the direction in which a line segment is parametrized, the
work along it is negated. So the net contribution of each
shared edge to the total work around all the rectangles
is zero. The only edges that are not shared are the edges
on the boundary of R. So the total work around all the
rectangles in R is the work around the boundary of R.

Now consider a simply connected region with a piecewise
smooth boundary. Any such region can be approximated
arbitrarily well with a region whose boundary consists
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of horizontal and vertical line segments. Here’s a way
to make such an approximation. Break up the bound-
ary into tiny segments with displacement dr = (dx, dy).
Replace each piece with a horizontal displacement dx
followed (or preceeded—it doesn’t matter) by a verti-
cal displacement dy. The work integral along the dis-
placement dr is approximated by the work integral along
the horizontal and vertical segments. In fact, that’s
what is suggested by our “differential form” notation
F·dr = M dx+N dy. But a region whose boundary con-
sists of horizontal and vertical line segments can be tiled
with rectangles. Taking the limit of better and better
approximations shows that Green’s theorem holds for
any simply connected region with a piecewise smooth
boundary.

2.5 Green’s formula for area enclosed by
a curve

Most often Green’s theorem is used to find a loop
integral by integrating derivatives over the the re-
gion enclosed by the loop. But we can also use it in
the opposite direction. For example, two formulas
to calculate area using a work integral are:¨

R
1 dx dy =

¨
R

∂x

∂x
dx dy =

‰
x dy,

¨
R

1 dx dy =
¨
R

∂y

∂y
dx dy = −

‰
y dx.

Averaging these formulas gives the popular formula¨
R

1 dx dy =
1
2

‰
x dy − y dx.

When there is a high degree of symmetry between
x and y this latter formula sometimes causes things
to cancel nicely.

Exercise. Use one of the preceding formulas to cal-
culate the area enclosed by the curve parametrized
by cos(t), 2 sin(t)). Answer: 2π.

2.6 Physical interpretation of Green’s
circulation theorem

We can interpret Green’s circulation theorem�
∂R F · dr =

˜
R
∂N
∂x −

∂M
∂y dA in terms of the

curl. The quantity (∂N∂x −
∂M
∂y ) is referred to as

the “two-dimensional” curl. To see why, recall
that two-dimensional vectors have a natural em-
bedding in three-dimensional space. That is, we

can think of a two-dimensional vector as a three-
dimensional vector if we add a third component
equal to zero. Similarly the two-dimensional vec-
tor field (M(x, y), N(x, y)) has a natural embed-
ding of in three-space, F = (M(x, y), N(x, y), 0).
Calculating the curl shows that the first two com-
ponents are zero, but the third component is the
usual value of k̂ · ∇ × F = (∂N∂x −

∂M
∂y ). Also, re-

call that dr = T̂ ds, where T̂ is the unit tangent
and ds = ‖dr‖ is displacement length. So we can
rewrite Green’s theorem as:‰

∂R
F · T̂ ds =

¨
R

k̂ · ∇ × F.

That is, Green’s circulation theorem says that the
counterclockwise circulation around ∂R is the inte-
gral of the out-of-plane component of the curl over
R. In part three we will generalize this statement
slightly to apply to arbitrary surfaces in three-
dimensional space and we will christen it Stokes’
circulation theorem. Applying Stokes’ theorem to
an infinitesimal region (a region small enough that
the curl is approximately contant) shows that phys-
ically the curl is the circulation per area.

3 Divergence theorem

In two dimensions the divergence theorem and the
circulation theorem are two ways of viewing Green’s
theorem. Just as circulation measures the tendency
to circulate around a loop, flux measures the ten-
dency to flow out of a loop.

Flux refers to the (rate of) flow of some kind of stuff
across a boundary. Let v(r) be a vector field which
represent the velocity of a substance of density ρ
as a function of position in space. Let dr denote
a short line segment in space with length ds and
unit normal vector n̂. The amount of stuff that
flows across this line segment in the direction of n̂
in time dt is ρv · n̂ dt ds, i.e., the amount of stuff
per area (ρ) times the area of stuff passing through
the line segment. The flux vector is defined to be
F := ρv. So the rate of flow across dr is F · n̂ ds.
The rate of flow across a curve is the integral of
the rate of flow across infinitesimal segments. So
the flux across curve C toward the side n̂ points
toward is:

´
C F · n̂ ds. Consider a counterclockwise

parametrization r(t) of a simple closed curve in the
plane. Rotating dr = (dx, dy) 90 degrees clockwise
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gives the outward normal vector n̂ ds = (dy,−dx).
Using Green’s theorem,

˛
∂R

F · n̂ ds =
‰
∂R

(
M
N

)
·
(
dy
−dx

)
=
‰
∂R
M dy −N dx

=
¨
R

∂M

∂x
+
∂N

∂y
dx dy

=
¨
R
∇ · F dx dy

To understand the physical meaning of the diver-
gence, apply this theorem to a very small test region
R of area (∆A) on which ∇ · F and ρ are approx-
imately constant. The amount of stuff in this re-
gion is approximately ρ(∆A). The rate of change
of the amount of stuff in this region is (∆A)∂ρ∂t =
−
¸
∂R F · n̂ ds = −

˜
R∇ · F dx dy ≈ ∇ · F (∆A).

So the divergence of the flux of stuff is negative the

rate of change of the density: −∂ρ
∂t = ∇ · F .

Exercise (more challenging). Let ρ(t, r) be the density
of a fluid as a function of space and time, and let v(t, r)
be the fluid velocity. Let r(t) denote the path of a par-
ticle in the fluid. So dr

dt = v(r(t)), ρ(r(t)) is the density
along the particle’s path, and dρ

dt := dρ(t,r(t))
dt denotes the

rate of change of the density along the particle’s path.
(1) Use the chain rule to show that dρ

dt = ∂ρ
∂t + v · ∇ρ.

(2) Show that − 1
ρ
dρ
dt = ∇ · v, i.e., the divergence of

the velocity is the negative of the logarithmic rate of
change of the density. (Hint: using the product rule,
−∂ρ∂t = ∇ · (ρv) = ρ∇ · v + v · ∇ρ; solve for ∇ · v.)

4 Conclusion

In summary Green’s theorem in the plane may be
viewed as a Divergence theorem, which states that
the outward flux is the integral of the divergence:

˛
∂R

F · n̂ ds =
¨
R
∇ · F dx dy, i.e.,

‰
∂R
M dy −N dx =

¨
R

∂M

∂x
+
∂N

∂y
dA

or it may be viewed as a Circulation theorem, which
states that the circulation is the integral of (the

perpendicular component of) the curl:
‰
∂R

F · T̂ ds =
¨
R

k̂ · ∇ × F, i.e.,
‰
∂R
M dx+N dy =

¨
R

∂N

∂x
− ∂M

∂y
dA.

Exercise. Let F(x, y) = (3x− y, x+ 3y + y2). Let
C be the ellipse x2 + y2/4 = 0.

• What is a counterclockwise parametrization of
the ellipse? Answer: x(t) = (cos(t), 2 sin(t)).

• What is the area of the ellipse? (Hint: the
ellipse is a unit circle that has been stretched
in each axis by a certain factor.) Answer: 2π.

• Calculate the counterclockwise circulation
around the ellipse directly.

• What is (the out-of-plane component of) the
curl of F? Answer: 2

• Calculate the counterclockwise circulation
around the ellipse using Green’s theorem. An-
swer: 4π.

• Calculate the flux out of the ellipse directly.

• What is the divergence of F? Answer: 6 + 2y.

• Calculate the flux out of the ellipse using
Green’s theorem. Answer: 12π.
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