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We studied the differential calculus of scalar-valued
functions in chapter 14. In chapter 15 we studied
the integral calculus of scalar-valued functions. This
document discusses integration of continuous real-
valued functions of two or three variables. We use
f(x, y) to denote a generic function from R2 to R,
and we use f(x, y, z) to denote a generic function
from R3 to R.

1 Definition of integration over
multidimensional regions.

The integral of a function f(r) over a two-
dimensional region A is written as

∫∫
A f dA. It is

the sum of the area of each infinitesimal piece dA
of A multiplied by the value of the function in each
piece. If f = 1 then

∫∫
R f dA is simply the area

of region A. To approximate the integral computa-
tionally we use pieces of finite size, and we call the
approximation a Riemann sum. The integral can be
rigorously defined to be a limit of Riemann sums as
the size of the pieces goes to zero:∫∫

A
f dA := lim

norm({Ak})→0

∑
k

f(rk)∆Ak;

here {Ak} represents a partition of the region A into
(small) non-overlapping pieces (which we will call
cells) which cover the region A, each rk is a sample
point lying in its corresponding region (i.e., xk ∈
Ak), ∆Ak is the measure (i.e. area or volume) of cell
Ak, and norm({Ak}) is the norm of the partition, i.e.
the largest cell radius. (The radius of a cell is defined
to be the the smallest number that is greater than
or equal to the distance between any two points in
the cell. We say that two cells are non-overlapping
if there is no ball (disc) that they both contain.)

The integral of a function f(x, y, z) over a three-
dimensional volume V is written

∫∫∫
V f dV. The def-

initions are just like the definitions for area.

We often simply write
∫∫
A f or

∫∫∫
V f .

Exercise. Let f(x, y) = xy and let A = [0, 1]×[0, 2].
(A is called the Cartesian product of the intervals
[0, 1] and [0, 2]. A is the rectangle of points (x, y)
satisfying the inequalities 0 ≤ x ≤ 1 and 0 ≤ y ≤
2.) Find

∫∫
A f dA by computing a limit of Riemann

sums. Answer:∫∫
A
f dA := lim

n→∞

n∑
i=0

2n∑
j=0

f
( i
n
,
j

n

) 1
n2

= lim
n→∞

1
n4

n∑
i=0

i
2n∑
j=0

j

= lim
n→∞

1
n4

n(n+ 1)
2

2n(2n+ 1)
2

= 1.

2 Iterated integrals

In practice, to calculate multidimensional integrals
we use iterated integrals. Recall that a one-
dimensional slice of a multivariable function is a
function obtained by freezing all but one of its vari-
ables. Just as we used slices to do multivariable dif-
ferential calculus using the tools of one-variable dif-
ferential calculus, we also use slices to do multivari-
able integral calculus using the tools of one-variable
integral calculus. Specifically, we can slice and per-
form one-dimensional integrals iteratively along each
dimension to reduce the dimensions of the integral
one dimension at a time until we get a single number
that represents the value of the integral.

Suppose that a region R is defined by an iterated in-
equality of the form x1 ≤ x ≤ x2, y1(x) ≤ y ≤ y2(x).
Let f(x, y) represent the density of “stuff” in region
R. To find the integral

∫∫
R f we first integrate slices

along y from the lower boundary function to the up-
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per boundary function, regarding x as a constant (so
we take a “partial antiderivative” with respect to y).
This gives us a function of x:

S(x) :=
∫
R
f dy :=

∫ y2(x)

y=y1(x)
f(x, y) dy.

S(x)dx represents the amount of stuff in a y-slice of
infinitesimal thickness dx. To find the total amount
of stuff we then integrate S(x)dx from the lower
bound x1 to the higher bound x2 (this interval is the
one-dimensional shadow of R when it is projected
onto the x-axis along the y-slices by extending them
to hit the x-axis):∫∫

R
f =

∫ x2

x=x1

S(x) dx

=
∫ x2

x=x1

(∫ y2(x)

y=y1(x)
f(x, y) dy

)
dx.

We can extend this idea to three dimensions. Sup-
pose that R is defined by an iterated inequality
of the form x1 ≤ x ≤ x2, y1(x) ≤ y ≤ y2(x),
z1(x, y) ≤ z ≤ z2(x, y). Let f(x, y, z) represent the
density of “stuff” in region R. To find the integral∫∫∫

R f we first integrate slices along z from the lower
boundary function to the upper boundary function.
This gives us a function S(x, y):

S(x, y) :=
∫
R
fdz :=

∫ z2(x,y)

z=z1(x,y)
f(x, y, z) dz.

S(x, y) dx dy represents the amount of stuff in a z-
slice of infinitesimal area dx dy. To find the total
amount of stuff we then integrate S(x, y) dx dy over
the two-dimensional region x1 ≤ x ≤ x2, y1(x) ≤
y ≤ y2(x) (this region is the two-dimensional shadow
of R when it is projected onto the x-y plane along
the z-slices):∫∫∫

R
f =

∫ x2

x=x1

∫ y2(x)

y=y1(x)
S(x, y) dy dx.

=
∫ x2

x=x1

∫ y2(x)

y=y1(x)

∫ z2(x,y)

z=z1(x,y)
f(x, y, z) dz dy dx.

Most regions do not come dressed up as the solu-
tion set of an iterated inequality. Usually a region
is defined using the equations of the boundaries. To
represent a region using iterated inequalities do the
following:

1. Choose an order of integration (let’s say
dz dy dx).

2. Solve the boundary equations for z (the first
integration variable).

3. Chop up the region into subregions which can
be represented using an iterated inequality. In
particular, you will need to define subregions
which lie between a lower boundary z1(x, y) and
an upper boundary z2(x, y). Then you will need
to project each subregion onto the x-y plane and
repeat this process for its shadow region.

Here are some tips for doing iterated integrals:

• It is often the case that whether an iterated in-
tegral is easy or difficult (or even possible in
terms of elementary functions) depends on the
order of integration that you choose.
• I generally find it much easier to sketch the

regions than to try to work directly with the
inequalities that define them. Inequalities are
hard!
• Pay attention to what is constant and what

may vary. If you see something like I :=∫ 2
x=0

∫ 2
y=1 f(x)g(y) dy dx then f(x) is a constant

in the inner integrand, so you can factor it out.
Then the inner integral will give a number inde-
pendent of x. So we can factor it out of the outer
integral. So I =

( ∫ 2
0 f(x) dx

)( ∫ 2
1 g(y) dy

)
.

Some people like to write iterated integrals us-
ing the notation

∫ x2

x1

∫ y2
y1
f(x, y) dy dx, where dx and

dy function as closing parentheses for their respec-
tive integrals; others like to write something like∫ x2

x1
dx
∫ y2
y1

dy f(x, y), making it easier to see which
variable is being integrated for each integral. I
choose to write

∫ x2

x=x1

∫ y2
y=y1

f(x, y) dy dx in order to
accomplish both ends.

3 Change of coordinates

The boundaries are often the most difficult aspect
of multidimensional problems. Therefore, it is often
convenient to change coordinates and calculate the
integral in a set of coordinates in which the bound-
ary equations (or the integrand) take a simple form.
When there is rotational symmetry polar, cylindri-
cal, or spherical coordinates are often appropriate.
The tricky part about changing coordinates is get-
ting the volume element correct.
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3.1 Polar coordinates

Polar coordinate specify the position of a point in
the plane in terms of its distance r from the origin
and its angle θ measured counterclockwise from the
positive x-axis. Right triangle trigonometry shows
that

x = r cos θ,
y = r sin θ,

r2 = x2 + y2.

Suppose that the region R is the solution set to the
system of iterated inequalities

θ1 ≤ θ ≤ θ2,
r1(θ) ≤ r ≤ r2(θ).

Consider a fixed value of r and θ. Allowing r to
vary by a small increment dr and allowing θ to vary
by a small independent increment dθ traces out an
infinitesimal rectangle with sides (rdθ) and dr. The
area of this infinitesimal element of surface area is
r dr dθ. So the integral of f(x, y) over R is expressed
in polar coordinates as∫∫

R
f =

∫ θ2

θ=θ1

∫ r2(θ)

r=r1(θ)
f(r cos θ, r sin θ)r dr dθ.

Always remember to include the factor of r in the
area element!

3.2 Cylindrical coordinates

Cylindrical coordinates (r, θ, z) are simply polar co-
ordinates plus a z axis. They specify the position of a
point in space by taking the rectangular (cartesian)
coordinates (x, y, z) and replacing the x and y co-
ordinates with the corresponding polar coordinates.
Fixing the coordinates and allowing them to vary in-
dependently by increments dr, dθ, and dz traces out
an infinitesimal box with sides r dθ, dr, and dz. The
infinitesimal volume element is thus dz r dr dθ.

Exercise. in cylindrical coordinates what is the in-
tegral of the function f(x, y, z) over the solution set
of the iterated inequalities

0 ≤ r ≤ r2(θ),
z1(r) ≤ z ≤ z2(r)?

Answer:∫ 2π

θ=0

∫ r2

r=0

∫ z2(r,θ)

z=z1(r,θ)
f(r cos θ, r sin θ, z)dz r dr dθ.

3.3 Spherical coordinates

Spherical coordinates (ρ, θ, φ) specify the position
of a point in space in terms of its distance ρ from
the origin, its angle φ from the z-axis, and its angle
θ from the x-z plane (measured “counterclockwise”
about the positive z-axis, i.e. from the x-axis toward
the y-axis). Spherical coordinates are obtained from
cylindrical coordinates by replacing the variables r
and z with the variables ρ and φ using a right trian-
gle with sides r, z, and ρ and angle φ:

r = ρ sinφ,
z = ρ cosφ,

ρ2 = r2 + z2.

Fixing the coordinates and allowing them to vary
independently by increments dρ, dθ, and dφ traces
out an infinitesimal box with sides dρ, r dθ, and ρ dφ.
Since r = ρ sinφ, the infinitesimal volume element is
thus dV = ρ2 sinφdρ dφ dθ.

Exercise. In spherical coordinates, what is the inte-
gral of g(r, θ, z) over the solution set to 0 ≤ ρ ≤ ρ2?
Answer:∫ 2π

0

∫ π

0

∫ ρ2

ρ1

g(ρ sinφ, θ, ρ cosφ)ρ2 sinφdρ dφ dθ.

3.4 General coordinates

A generic way to look for coordinates in which the
boundaries have simple equations is to regard the
boundaries as level sets of some function.

For example, suppose that you are asked to integrate
the function f(x, y) over the region R defined by the
inequalities 1 ≤ xy ≤ 9, 4 ≤ x/y ≤ 25. This region
would be messy to deal with in x-y coordinates. We
want to write the boundary equations of level sets of
functions u(x, y) and v(x, y) such that it is easy to
solve for x and y in terms of u and v.

If we define the variables ũ := xy and ṽ := x/y then
x =

√
ũṽ and y =

√
ũ/ṽ. Square roots are often
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nasty to deal with in integrals. If we instead use the
definitions u2 := xy and v2 := x/y, then x = uv and
y = u/v. Which choice of coordinates is better will
depend on what the integrand f(x, y) looks like.

In x-y coordinates the area element is simply dA =
dx dy. To transform the integral we need to deter-
mine the area element in u-v coordinates. To this
end, pick an arbitrary fixed point u = u0 and v = v0.
These coordinates select a corresponding point in
the x-y plane with coordinates x0 = x(u0, v0) and
y0 = y(u0, v0). If we allow u and v to vary indepen-
dently over an infinitesimal box

u0 ≤ u ≤ u0 + dumax,

v0 ≤ v ≤ v0 + dvmax,

i.e.,

0 ≤ du ≤ dumax,

0 ≤ dv ≤ dvmax,

then x(u, v) and y(u, v) will trace out an infinitesi-
mal parallelogram in the x-y plane. The area of this
parallelogram is the area element dA that we need
so that we can write down the integral in u-v coor-
dinates. The sides of this parallelogram are vectors,
which we can get from the linear approximation

x(u0 + du, v0 + dv) u x0 + xu du+ xv dv,

y(u0 + du, v0 + dv) u y0 + yu du+ yv dv,

where the partial derivatives (e.g. xu) are evaluated
at (u0, v0). That is,

dx = xu du+ xv dv,

dy = yu du+ yv dv.

In particular, if we choose one edge of the box,
( du, dv) = ( dumax, 0), then we get one edge of the
parallelogram, ( dx, dy) = (xu, yu) dumax ; and if
we choose the other edge of the box, ( du, dv) =
(0, dvmax), then we get the other edge of the par-
allelogram, ( dx, dy) = (xv, yv) dvmax . Taking
the magnitude of the cross product of the two
edges of the parallelogram gives its area: dA =∣∣∣∂(x,y)
∂(u,v)

∣∣∣ dumax dvmax, where

∂(x, y)
∂(u, v)

:= xuyv − xvyu

is called the Jacobian determinant. The magnitude
of the Jacobian determinant is the local volume mag-
nification factor of the transformation T := (u, v) 7→
(x, y). (The sign of the Jacobian determinant is neg-
ative if the sides of the parallelogram have the op-
posite orientation of the sides of the box.)

So in general the integral becomes∫∫
Q
f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ du dv,
where Q is the region in the u-v plane corresponding
to the region R in the x-y plane. For our particular
example, ∂(x,y)

∂(u,v) = −2u/v, so if we choose f(x, y) = x
then the integral becomes∫ 3

u=1

∫ 5

v=2
uv(2u/v) du dv = 16.

Exercise. Generalize this section to three dimen-
sions (volume integerals). (Hint: the infinitesimal
box du dv dw becomes an infinitesimal parallelpiped
whose volume is given by the triple scalar productxu duyu du

zu du

 ·
xv dvyv dv
zv dv

×
xw dwyw dw
zw dw

 ,
i.e. the determinant

∂(x, y, z)
∂(u, v, w)

du dv dw = det

xu xv xw
yu yv yw
zu zv zw

 du dv dw.)
Exercise. Find the volume of the region in the first
octant satisfying the inequalities 4 ≤ xy ≤ 9, 9 ≤
yz ≤ 16, 9 ≤ zx ≤ 25. (Hint: use the variables
u2 = xy, v2 = yz, and w2 = zx and show that
∂(x,y,z)
∂(u,v,w) = 4.) Answer: 8.
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