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1 Introduction

I want to show how to derive the laws of the universe of
classical physics. The main tools are Gauss’s divergence
theorem and Stokes’ theorem.

The basic law of classical physics are the forces of elec-
tromagnetism, the force of gravity, and Newton’s law of
how particles respond to forces. In modern physics New-
ton’s law becomes Quantum Mechanics (the theory
of “small things”). The theory of electromagnetism be-
comes Special Relativity (the theory of “fast things”).
General Relativity (the theory of “fast heavy things”)
reconciles special relativity with the theory of gravity.
Quantum Electrodynamics (the theory of “fast small
things”) reconciles quantum mechanics with special rel-
ativity. The big physics problem is to find a theory
of Quantum Gravity (a theory of “fast heavy small
things”) that reconciles quantum electrodynamics with
general relativity. String Theory is a proposal. But it’s
hard to test (unless we can somehow mimic the Big Bang
in a laboratory, like some of the big colliders are trying
to do).

2 Conventions

Symbol Meaning
t time
r position in space
r := ‖r‖ distance from origin
v = v(r, t) velocity
V , S arbitrary test volume, test surface
ρ = ρ(r, t) density (stuff per volume)
F = F(r, t) flux (flow density) of stuff (e.g. ρv)
σ = σ(r, t) electrical charge density

(net charge per volume)
J = J(r, t) electrical current density (e.g. σv)
E = E(r, t) electric field
B = B(r, t) magnetic field
g = g(r, t) gravitational field
∇, ∇·, ∇× gradient, divergence, curl
∇2 := ∇ · ∇ Laplacian

3 Background

Gauss’s divergence theorem says that the flux out
of the boundary of a region equals the integral of the
divergence over the interior:

‹
∂V

dA n̂ · F =
˚

V

dV ∇ · F.

I will write this in the more abbreviated form˛
n̂ · F =

ˆ
∇ · F ,

where the region, volume, area elements, and number of
integral signs are understood.

Stokes’ circulation theorem says that the circulation
around the boundary of a surface equals the flux of the
curl through the surface:˛

∂S

ds τ̂ · F =
¨

S

dA n̂ · ∇ × F.

I will write this in the more abbreviated form˛
τ̂ · F =

ˆ
n̂ · ∇ × F .

4 Conservation and balance laws

Many kinds of “stuff” are conserved, e.g. mass. Gauss’s
divergence theorem allows us to write a partial differen-
tial equation that says that “stuff” is conserved. Sup-
pose that a fluid has velocity v(r, t) and stuff density
ρ(r, t). Pick a fixed test region V . At any time t the
amount of stuff in V is

´
V
ρ. The volume of stuff that

passes through a piece of boundary is dA (the cross-
sectional area) times v·n̂ dt (the component of the veloc-
ity perpendicular to the area element times the infinites-
imal time increment). So the amount of stuff flowing
across the piece is ρv · n̂ dt dA (the amount of stuff per
volume ρ times the volume of stuff that flows out). The
flux vector is defined to be F := ρv . It is the density
of the flow of stuff. Dividing by dt and integrating over
the boundary, the rate at which stuff flows out of the
region is

¸
∂V

dA n̂ · F. If stuff is conserved, then the
rate of change of stuff in V is minus the rate at which it
flows out:

d

dt

ˆ
V

ρ = −
˛

∂V

n̂ · F .

This is the integral form of a conservation law. (I use the
integral form when I do computational plasma simula-
tion: I chop up space into little cells and try to estimate
the rate at which stuff flows across each cell boundary.)
Gauss’s theorem allows us to turn the boundary integral
into the integral of a divergence. Time and space are in-
dependent, so you can bring the time derivative inside
the integral (writing it as a partial derivative ∂t). So we
can write this as a single integral:ˆ

V

∂tρ+∇ · F = 0

This must be true for any V . So the integrand must be
zero. So the generic conservation law is

∂tρ+∇ · F = 0 .
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5 Balance Laws.

Let’s generalize the idea of a conservation law. Sup-
pose that instead of being conserved the amount of stuff
produced in an infinitesimal volume element dV in an in-
finitesimal time dt is S(r, t) dV dt. (S is negative if more
stuff is being destroyed than produced.) Then the rate
at which stuff is produced in a test volume V is

´
V
S dV .

Instead of a conservation law we have the balance law

d

dt

ˆ
V

ρ = −
˛

∂V

n̂ · F +
ˆ

V

S.

Writing this as
´

V
(something) = 0 leads to

∂tρ+∇ · F = S . (1)

The fundamental equations of physics are bal-
ance laws and therefore can be made to look like
this.

6 Basic PDEs

The generic balance law (1) is an example of a partial
differential equation (PDE). It cannot be solved un-
less the system is closed by specifying F and S in terms
of ρ.

There are three main types of equations that result from
closed balance laws. They all involve the Laplacian op-
erator ∇2 := ∇ · ∇ = ∂2

x + ∂2
y + ∂2

z :

1. Parabolic equations, which describe smearing pro-
cesses, most importantly the heat equation:

∂tu = κ∇2u .

2. Hyperbolic equations, which describe waves, most
importantly the wave equation:

∂2
t u = c2∇2u .

If u only varies with x then this simplifies to

∂2
t u = c2∂2

xu.

To verify that waves moving at speed c satisfy this
equation, plug in u(x, t) = f(x − ct) or u(x, t) =
f(x+ ct).

3. Elliptic equations, which describe steady-state equi-
libria, most importantly the Poisson equation:

∇2u = S ,

where S is an arbitrary known function called a
source term. The Poisson equation is used to find
potentials (antiderivatives) of vector functions.

The ability to solve these three equations is the main
objective of a first course in partial differential equations.

7 Evolution PDEs

7.1 Heat equation. An example of a balance law is
the heat equation. In this case “stuff” ρ is heat energy.
Assume that the heat flux is proportional to the temper-
ature gradient: F = −κ∇u, where u is the temperature
and κ is a constant called the heat conductivity. As-
sume that the change in heat energy is the specific heat
Cp times the change in temperature u. Then the generic
conservation law becomes

Cp∂tu = κ∇2u.

This equation is satisfied by sinusoidal functions that de-
cay exponentially. Fourier solved this problem by show-
ing how to write any function as a sum of sinusoidal
functions (called a Fourier series).

7.2 Wave equation. Imagine a taught horizontal
sheet of rubber. To model transverse waves, let u(r, t)
represent small vertical displacement of each point from
equilibrium. To derive the wave equation we will write
conservation of the vertical component of momentum
for a piece V of the sheet and then turn it into a partial
differential equation using Gauss’s law.

Let v = ∂tu be the vertical component of velocity. New-
ton’s second law says that the sum of the forces is mass
times acceleration, i.e., the force is the rate of change of
momentum: F = ma = d(mv)

dt . The vertical momentum
of a piece of the sheet is

´
V
ρ0∂tu, where ρ0 is the mass

density per area. For small slopes the vertical force per
length on the boundary curve is approximately propor-
tional to the slope in the direction n̂ perpendicular to the
boundary (i.e. the directional derivative Dbnu = n̂ ·u), so
the total force on the boundary is

´
∂V

T0n̂ · ∇u, where
the proportionality constant T0 signifies the tension in
the sheet. So the integral form of the wave equation is

∂t

ˆ
V

ρ0∂tu =
˛

∂V

T0n̂ · ∇u, i.e., ∂2
t u =

T0

ρ0
∇2u

using Gauss’s divergence theorem. Comparing this with
the generic wave equation, the speed of the waves is
evidently c :=

√
T0/ρ0.

8 Radial sources of flux

Consider a steady stream of stuff emanating radially
from a source region (e.g. photons from a lamp or solar
wind from the sun). Steady flow says time derivatives
are zero, so balance of particles says˛

∂V

n̂ · F =
ˆ

V

S, i.e., ∇ · F = S .

In other words, in steady flow the rate at which stuff
leaves a region is the rate at which it is produced inside
the region.

2



8.1 Inverse square attenuation from a point
source. Imagine radially symmetric flow from a point
source (a small spherical source region) at the origin.
The rate of flow through a spherical shell centered at the
source is flux density times the area of the sphere. Since
area is proportional to radius squared, the flux density
must attenuate in proportion to the inverse of the radius
squared. This is the inverse square law. So

F ∝ r̂
r2

= ∇
(
−1
r

)
(where the proportionality constant is evidently the
strength of the source divided by 4π). This is the flux of
a point source. Other sources can be approximated as a
sum of point sources. So more complicated sources also
have a potential.

8.2 Inverse attenuation from a line source.
Consider a two-dimensional version. So imagine stuff
emanating radially from a long straight wire. The rate
of flow through a cylinder centered on the wire is pro-
portional to flux density times the radius of the cylinder,
so the flux density must attenuate in proportion to the
inverse of the radius:

F ∝ r̂
r

= ∇ ln r,

(where the proportionality constant is evidently the
strength of the source divided by 2π).

9 Gravitation

By studying Kepler’s laws of planetary motion Newton
inferred that the force of gravity between two bodies
is proportional to Mmr−2, the product of their masses
divided by the square of the distance between them. De-
fine the gravitational field g to be the acceleration of a
small test mass m. Newton’s law of gravity says that
the gravitational field produced by a point mass M is

g = G
M

r2
r̂,

where r denotes displacement from the point mass and
G is a proportionality constant called the universal grav-
itational constant. So the gravitational field can be inter-
preted as a flux whose source is the mass density. (You
can imagine “gravitons” streaming from each massive
particle. Then g is proportional to the flux of gravi-
tons.) So˛

∂V

n̂ · g = −kg

ˆ
V

ρ i.e., ∇ · g = −kgρ ,

where kg := 4πG.

9.1 Gravitational Potential. The gravitational
field produced by each particle is the gradient of a po-
tential. (The potential function is kgM‖r − r0‖−1.) So

the total gravitational field is also the gradient of a po-
tential: g = −∇φ. So Newton’s law of gravity can be
written as a Poisson equation:

∇2φ = kgρ .

To solve the Poisson equation sum (integrate) the po-
tentials of all the particles:

φ(r) = kg

ˆ
r0

ρ(r0)‖r− r0‖−1 dr0.

10 Electromagnetism

10.1 Charge conservation. Current is the flow of
(electrical) charge. When a charge density σ moves with
a velocity v it produces a current density J := σv. So
current is the flux of charge. Charge is conserved. So
charge conservation says

d

dt

ˆ
V

σ = −
˛

∂V

n̂ · J, i.e., ∂tσ +∇ · J = 0 .

10.2 Gauss’s law. People noticed that an electric
charge produces a force on other charges that attenuates
in proportion to the inverse of the square of the distance
between the charges. This is exactly like gravity. Define
the electric field E to be the force per charge on a small
test charge. Let σ represent net charge density. Then
electric field is a flux whose source is the charge density:˛

∂V

n̂ ·E =
ˆ

V

σ/ε0, i.e., ∇ ·E = σ/ε0 ,

where ε0 is a proportionality constant called the permit-
tivity of free space.

10.3 No magnetic monopoles. A small rod with
balancing positive and negative electric charges on the
two ends is called an electric dipole. Electric dipoles line
up with the electric field.

You can indicate a field with field lines. Gravitational
field lines radiate from matter and go to infinity. The
density and direction of field lines indicate the flow of
“gravitons”, i.e. the strength and direction of the grav-
itational field. Electric field lines radiate from positive
charges, move parallel to the electric field, and end at
negative charges.

Magnetized iron filings in the presence of a magnet orient
themselves along lines. We infer the existence of a mag-
netic field B. We can think of the filings as “magnetic
dipoles” with positive and negative “magnetic charges”
at each end. But magnetic field lines generally don’t
start or end (they often go in circles) the way they would
if magnetic charges (“monopoles”) existed. The num-
ber of field lines entering and exiting any volume is the
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same, i.e., the net flux of the magnetic field through
any boundary is zero, because there are no magnetic
monopoles:˛

∂V

n̂ ·B = 0 i.e., ∇ ·B = 0 .

10.4 Faraday’s law. A changing magnetic flux
through a wire loop produces an electrical current
around the loop. Faraday knew that current is produced
by an electric field, so he inferred that the circulation of
the electric field is minus the rate of change of flux of
the magnetic field:˛

∂S

τ̂ ·E = − d

dt

¨
S

n̂ ·B i.e., ∇×E = −∂tB .

10.5 Ampere’s law. Steady current flowing
through a wire produces a magnetic field that circulates
around the wire. The strength of this magnetic field
is inversely proportional to the distance from the
wire. This means that current density is a source
of circulation of magnetic field. Ampere’s law says
the circulation of the magnetic field around a loop is
proportional to the flux of the current through the loop:˛

∂S

τ̂ ·B = µ0

¨
S

n̂ · J, i.e., ∇×B = µ0J ,

where µ0 is a proportionality constant called the perme-
ability of free space.

10.6 Maxwell’s fix to Ampere’s law. Is current
density the only source of circulation of magnetic field?
Take the divergence of Ampere’s law. Recall that the
divergence of the curl is zero, so we just get ∇ · J = 0.
But charge conservation says ∂tσ+∇·J = 0. So Ampere
implies steady charge density, ∂tσ = 0. Maxwell added
a correction C to Ampere’s law: ∇ × B = µ0J + C.
To determine what C should be, take the divergence
and use charge conservation and Gauss’s law: ∇ · C =
−µ0∇ · J = µ0∂tσ = µ0ε0∂t∇ · E. This will hold if we
define C = µ0ε0E, giving the Maxwell-Ampere law

∇×B = µ0J + µ0ε0∂tE .

You can derive this same result using the integral formu-
lation of the equations of electromagnetism. Let V be an
arbitrary volume and let S = ∂V . Then the bounday of
S is empty. Add an unknown correction to the right hand
side of Ampere’s law and apply Ampere to S = ∂V . So the
correction equals the flux of −µ0J. But charge conservation
says that the flux of −J is the rate of change of the total
charge. Gauss says that the total charge is the flux of ε0E.
So the correction equals the flux of µ0ε0∂tE. Assuming that
this correction holds for any surface (not just boundaries of
volumes) gives us the integral form of the Maxwell-Ampere
law: ˛

∂S

bτ ·B = µ0

¨
S

bn · J + µ0ε0∂t

¨
S

bn ·E.

10.7 Lorentz force law. An electrical charge q ex-
periences a force in the presence of an electromagnetic
field. The force of the electric field is by definition qE.
Magnetic fields also exert a force on a charge. People no-
ticed that a wire carrying a current through a magnetic
field feels a force perpendicular both to the wire and to
the magnetic field. This lead to the Lorentz force law
for the total electromagnetic force on a charge moving
with velocity v:

(force) = q(E + v ×B) .

11 Light waves

Faraday’s law and the Maxwell-Ampere law are coupled
equations for the evolution of the electric and magnetic
field. For simplicity ignore current: J = 0. Take the
time derivative of Faraday’s equation, eliminate E using
Maxwell-Ampere, and use ∇ · B = 0 and the vector
identity ∇×∇×B = ∇∇ ·B−∇ · ∇B to get

∂2
t B = c2∇2B,

where c :=
√

1/(ε0µ0). This is a wave equation for each
component of the magnetic field. It says that electro-
magnetic waves propagate at speed c, the speed of light.

The electric field also obeys a wave equation. Assume
also that σ = 0. Then Maxwell’s equations are symmet-
ric between E and B and we can conclude that

∂2
t E = c2∇2E.

Lorentz and later Einstein developed the equations of
special relativity by assuming that the equations of elec-
tromagnetism hold in any reference frame. Einstein re-
alized the true physical significance of assuming that the
speed of light is the same in every reference frame.
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