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1 Course overview

The purpose of this course is to generalize math 221
(single-variable calculus) to multiple variables.

Calculus is the study of things that are smooth.
Smooth means locally flat. The study of things that
are flat is called Linear Algebra. Calculus and
linear algebra are the two foundational subjects for
science, engineering, and most of the rest of mathe-
matics (e.g. differential equations, probability, statis-
tics).

This course covers Chapters 13 through 16 of the
text:

1. Chapter 13 covers the calculus of curves, i.e.
smooth functions from R to R? or R3. We rep-
resent a typical such function as r(t) = z(t)i +

x(t)

y(t)

z(t)

and r(t) as position in space.

y(t)j+ z(tH)k = . We think of ¢ as time

2. Chapter 14 covers the differential calculus of
functions from R™ to R. We represent a typical
function from R? to R by f(x,y). The graph of
such a function f is a surface. We will use par-
tial derivatives (where we differentiate f with
respect to one variable while holding the other
variable(s) constant) to find the tangent plane
at a given point on a surface.

3. Chapter 15 covers the integral calculus of
functions from R™ to R. For example, we might
want to find the volume under a surface f(z,y)
over a region in the x—y plane, or the total mass
within a 3-dimensional region.

4. Chapter 16 covers the differential and integral
calculus of vector fields, i.e. smooth functions

from R™ to R™. We represent a typical such
function by F(r). (Usually we just write F with
the understanding that it is a function of space

r.)
2 Notes on Chapter 12
2.1 Vectors

2.1.1 Points versus Vectors

In this course we will study points and vectors in 2-
and 3-dimensional space. It is important to under-
stand the distinction between a point and a vector.

A point is a position in space. Mathematically we
represent a point using its coordinates in a coordi-
nate system. The text usually uses capital letters
to represent points. The text denotes a point in a
Cartesian coordinate system using three coordinates
in parentheses. To name the coordinate variables, we
usually use either numerical subscripts or successive
letters of the alphabet. For example: P = (z,y, 2),
or U = (uy,ug,us).

A vector is an “arrow”: it has a magnitude and a
direction. Two vectors are the same if they have the
same length and direction, even if their tails are an-
chored at different base points. To represent a vector
in a Cartesian coordinate system we place its tail at
the origin and record the position of its head. The
text tends to use bold lower case letters to stand for
vectors; it represents a vector in a Cartesian coordi-
nate system using three coordinates in angle brack-
ets. For example: r = (z,y, ), or u = (uy, ug, us).

You can perform arithmetic on vectors and points as
follows. It does not make sense to add two points.
But you can take the difference of two points P and
@, and the result is a vector v = P — Q. This vector



represents the displacement from P to ). If you add
a vector to a point, you get another point, and if you
add a vector to a vector you get another vector. For
example: Let v. = P — Q. Let u = @ — R. Let
w=u+v. Then P=Q + v and Q = R+ u, so
P=R+u+v=R+w.

In these notes we identify every point P with the
vector p that points from the origin O to P. This
allows us to blur the distinction between vectors and
points.

2.1.2 Multiplication by a Scalar

To multiply a vector u by a scalar ¢, multiply each
component by the scalar:

tu = t{uy, ug, ug) := (tuy, tug, tug).

(Note that “A = B” simply means that A and B
are equal, whereas when we write “A := B” we are
saying that A is defined to be B.) This rescales the
length of u by a factor of £. If t is positive the direc-
tion remains the same; if ¢ is negative the direction
is reversed.

2.1.3 Dot Product

The dot product takes two vectors and gives you a
scalar (i.e. a number). It is also called the scalar
product. The dot product has an algebraic defi-
nition and a geometric definition. Algebraically the
dot product of two vectors is the sum of the products
of the corresponding components:

u- Vv .= UV + Ug¥2 + u3v3.
From this definition you can easily show that the

dot product obeys distributive, commutative, and
associative laws:

property identity

commutativity u-v=v-u

distributivity u-(v+w)=u-v+u-w
scalar associativity | t(u-v) = (tu) - v

“w.»

You probably have seen used to denote multipli-
cation by a scalar. This should not cause confusion,
since the dot product of two scalars is their scalar
product.

2.1.4 Norms

The length of a vector is called its magnitude or
norm. The magnitude of a vector v is denoted |v|,
using absolute value symbols. This should not cause
confusion, because for one-dimensional vectors the
norm is the absolute value. But to be extra clear,
we often use two bars for the norm and one bar for
the absolute value. For example:

[#v ]l = [t - [l

You can apply the Pythagorean theorem to a couple
right triangles to show that the square of the length
of a vector is the sum of the squares of its compo-
nents:

Hu\|2:u-u:u%+u§+u§,

where ||ul|| denotes the length of the vector u.
2.1.5 Unit direction vectors

If we scale a vector by the reciprocal of its magnitude
we will get a vector of length 1 called the unit di-
rection vector. We often denote a direction vector
by putting a hat over it. So we will write:

~ u
u:

IRE

u-u 1.

Observe that indeed ||u[|? =1 -1 = TulZ —

Three special unit vectors are the unit vectors along
the principle axes (in the positive direction). These
vectors are called the standard basis vectors. Dif-
ferent people give them different names:

8 =X :i=i:=i:= (1,0,0),
/e\2 = y ::./i\::j = (07170>7
€3 :=7:— k:=k= (0,0,1).

The book uses i, j, and k.

2.1.6 Geometric definition of dot product
(Law of Cosines)

If you anchor the tails of two vectors u and v at the
origin, they span an angle # and a triangle with sides
of length ||ul|, ||v||, and ||[v—ul|. If you apply the law



of cosines to the sides of this triangle and simplify,
you get the law of cosines for vectors, also known as
the geometric definition of the dot product:

lu-v =uf - [|v] cost].

This says that the dot product of two vectors is the
product of the lengths times the cosine of the angle
between them. The geometric definition reveals the
most important property of the dot product:

Two monzero wvectors are perpendicular if
and only if their dot product is zero.

2.1.7 Orthogonal decomposition and projec-
tion.

Given two vectors u and v, we can use the dot prod-
uct to write v as the sum of a vector v|| = tu parallel
to u and a vector v perpendicular to u:

v=tu+v,.

To find ¢t dot this equation with u and solve for .
Since v -u =0, t = 7. The vector v is called the
projection onto u of v, which the book denotes as

u-u
pr,v. So:

v-u JRON
PLyV = —— u= (v-u)u = prgv.

2.2 Physical meaning and application of
dot product

Recall that u-v = ||lul|(]|v]| cos@). Since ||v]|| cosé
is the length of the projection of v onto u, the geo-
metric definition of the dot product says:

The dot product of u and v is the length
of u times the length of the projection of v
onto u.

An important application is the definition of work.
If a force F is applied to move an object through a
displacement dx, the amount of work dW is:

AW =F - dx,

ie.,

The work performed when a force F is ap-
plied over a displacement dx is the magni-
tude of the displacement times the magni-
tude of the component of the force in the
direction of the displacement, which is the
same as the magnitude of the force times
the magnitude of the component of the dis-
placement in the direction of the force.

2.2.1 Cross Product

In general, the cross product takes two vectors and
gives a vector perpendicular to both of them.

Let u and v be two vectors. Geometrically the cross
product w = u X v is defined to satisfy three prop-
erties:

1. w is perpendicular to u and v; more precisely,
w-u=0and w-v =0,

2. the length of w is the area of the parallelogram
spanned by u and v; i.e., [|[w| = |ju| -|v] siné,
where 6 is the angle between u and v, and

3. the ordered triple u, v, w has the same (conven-

tionally right-handed) orientation as the stan-
dard basis vectors i, j, k.

Algebraically the cross product w = u x v is defined
by

W1 = U2V3 — U3V,

W2 ‘= U3vV1 — U1vV3,

W3 ‘= U1V — UV1.
(You only need to remember the formula for one of
the components. To get the other two formulas, you
can just cycle the components using mod-3 cyclical
arithmetic, where 4=1, 5=2, 6=3, etc.) You can
easily verify that w-u =0 and w-v = 0.

The cross product has the following properties:

property identity

anticommutativity | u X v=—v xu
distributivity ux (V+w)=uxXv+uxw
scalar associativity | t(u x v) = (tu) x v

Note that it is not true in general that (uxv) xw =
u X (v xw), i.e., the cross product is not associative.
(Try it out with the standard basis vectors.)



2.3 Lines

A line is determined by a base point rg on the line
and a vector u in the direction of the line. A generic
point r is on the line if r — ry is parallel to u, i.e., if
there exists a scalar ¢ such that r —rg = tu. Solving
for r gives an equation for the line in terms of the
parameter ¢:

r(t) =rp + tu.
Written out in components, this is:

T = xg + tuq,
Y = Yo + tug,
z = zo + tus.

To eliminate the parameter ¢ and get a system of
equations in z, y, and z we solve each equation for
t:

t:l‘—mozy—yo:
(51 u9

Z— 20
us '

This is a system of two independent equations in
three unknowns. The graph of each equation is a
plane. Their intersection is our line. Note that this
system is not uniquely determined, since we could
rescale u or choose a different point ry on the line.

2.4 Planes

A plane is determined by a base point rg on the
plane and a vector n = (A, B,C') perpendicular to
the plane. The condition for a generic point r to be
on the plane is that the difference vector r —ry must
lie in the plane, i.e., it must be perpendicular to n:

(r—rg) -n=0, ie,
r-n—ro-n=>0, ie.,

r-n=rg-n.

This says that any two vectors in the plane have the
same dot product D with n. Written out in compo-
nents this reads

Ax+ By+Cz=D.

Observe that you can read off the coefficients of =z,
y, and z to get the components of the normal vector.

2.5 Exercises

The following exercises should serve as a quick check
on your understanding of the most important skills
and concepts of chapter 12:

1. Write the vector v = (2,—-3,4) as the sum of
vectors parallel and perpendicular to the vector
u = (3,—4,12). Check your answer.

2. Find parametric and symmetric equations
for the line through the points P =
(—1,3,-2),Q = (1,2,4). (Hint: the difference
of two different points in a line is a vector in the
direction of the line.) Check that both points
are on the line.

3. Find the equation of the plane through the
three points P = (—1,3,-2),Q = (1,2,4),R =
(0,4,5). (Hint: find two nonparallel vectors
that lie in the plane and take their cross prod-
uct to get a vector perpendicular to the plane.)
Check that all three points satisfy the equation
of the plane.

2.6 Quadratics

By rotation, shifting, and rescaling of axes, every
nondegenerate quadratic in three variables (i.e. any
expression of the form Aj12? + Agpy? + Aszz? +
2A190y+2A1302+2A03y2z+ Bix+Boy+ Bsz+F = 0)
can be put in one of the following forms:

Form Type of Quadric Surface

R |
2yt -2 =1
—x? -yt 22 =1
?4+y?—2=0

ellipsoid

hyperboloid of one sheet
hyperboloid of two sheets
elliptic paraboloid

22 —y?—2=0 hyperbolic paraboloid
%+ y2 —22= cone

2 +y? =1 elliptic cylinder

22 —y? =1 hyperbolic cylinder
>4y = parabolic cylinder.

To understand the graphs of equations that involve
the sum of two squares, recall that in cylindrical
coordinates 7> = 22 4 y? and graph z versus 7.
The hyperbolic paraboloid looks like a saddle. To
see this it helps to look at slices. See section 12.6
and http://en.wikipedia.org/wiki/Quadratic_
surface for more details.



