
Notes on Differential Calculus of Surfaces (Chapter 14)

by Alec Johnson

fall, 2009

This document discusses smooth real-valued func-
tions of multiple variables. We use f(x, y) to denote
a generic function from R2 to R, and we use f(x, y, z)
to denote a generic function from R3 to R.

1 Anonymous functions.

We use anonymous function notation to specify a
function without having to give it a name. For ex-
ample, x 7→ x3 is the cube function, and (x, y) 7→
x2y + b is the anonymous way to refer to the func-
tion f(x, y) = x2y + b. To evaluate an anonymous
function, we use a vertical bar: e.g., (x 7→ x3)

∣∣
2

= 8.

2 Slices

A slice of a multivariable function f(x, y, z) is a func-
tion obtained by freezing some of the variables. If
we freeze all the variables except for one, we get a
function of one variable, called a one-dimensional
slice. For example, the function x 7→ f(x, y0) is
the slice of f along the line y = y0, and the func-
tion x 7→ f(x, y0, z0) is the slice of f along the line
y = y0, z = z0.

3 Partial derivatives

By considering one-dimensional slices we can use the
tools of one-variable calculus to do multivariable cal-
culus. We refer to old-fashioned one-variable deriva-
tives as ordinary derivatives. The partial derivative
of f with respect to x, written ∂f

∂x , is defined to be
the ordinary derivative of f with respect to x holding
the other variables constant. It is the rate of change
of f as you move parallel to the x axis. It is denoted
∂f
∂x , Dxf , or fx. So

∂f

∂x
(x0, y0, z0) :=

d
(
x 7→ f(x, y0, z0)

)
dx

∣∣∣
x=x0

.

(Recall that we write A := B (or sometimes B =: A)
to mean that A is defined by B.)

4 Quantity notation

Physicists often use “quantity notation” to specify
multivariable functions. A common example is the
ideal gas equation PV = NkT . We write P (T, V,N)
to refer to the quantity named P as a function of the
quantities named T and V , and N .

When we are using quantity notation, we write some-
thing like

(
∂P
∂T

)
V,N

to mean “the partial derivative

of the quantity P as T changes and V and N are held
constant”, where it is implied that P (T, V,N), i.e.,
that the quantity P is a function of the independent
quantities T , V , and N .

Remark 4.1 (Notation for partial derivatives). The
notation for partial derivatives can be problematic.
When you take a partial derivative, you must be very
clear what function and what argument you are talk-
ing about. ∂f

∂x means “the partial derivative of f with
respect to the formal argument named x holding the
other arguments constant”. The problem can arise
when you take the derivative of an expression for
a quantity, where the function is not explicitly de-
fined. Then you need to be clear “which arguments
you are holding constant”, i.e., which function you
are talking about. Here is an example of ambiguity
that arises when you are doing implicit partial dif-
ferentiation: Does ∂f(x,y,z(x,y))

∂x mean

∂

∂x

[
(x, y) 7→ f(x, y, z(x, y))

]∣∣∣∣
(x,y)

=:
∂

∂x

[
f(x, y, z(x, y))

]
or

∂

∂x

[
(x, y, z) 7→ f(x, y, z)

]∣∣∣∣
(x,y,z(x,y))

=: (fx)(x, y, z(x, y))?

The problem is that our notation is ambiguous and
uses the letter x to refer to two different things:
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(1) the first argument of the function f and (2) the
first coordinate of the point where we are evaluat-
ing our partial derivative. One way to deal with this
would be to rename the formal arguments of f as
(u, v, w) and write something like ∂f

∂u

∣∣
(x,y,z(x,y))

. An-
other way would be be to use the notation Dn, the
partial derivative with respect to the nth argument
and write something like D1f

∣∣
(x,y,z(x,y))

.

Exercise. Let f(x, y, z) = x2y3 + z. Find ∂f
∂x ,

∂f
∂y (1, 2, 3), and ∂f

∂z (1, 2, 3). Answers: 2xy3, 12, and
1.

5 Linear functions

The essential idea of calculus is that the graph of
a smooth function locally looks flat. Another word
for flat is linear. So the starting point for under-
standing the calculus of multivariable functions is to
understand linear functions of multiple variables.

In this section we let f(x, y) represent a linear func-
tion from R2 to R. Its graph is a plane. Its partial
derivatives are constants. What does the formula
for such a linear function look like? I claim that it
is given by the “point-slopes” formula

f(x, y) = f(x0, y0) +A(x− x0) +B(y − y0) ,

where the “slopes” are the partial derivatives:

A =
∂f

∂x
, B =

∂f

∂y
.

To check this claim, simply observe that the right
hand side agrees with f at the base point (x0, y0) and
has the same partial derivatives. A little thought
should convince you that if two functions f and g
agree at a base point and have the same partial
derivatives, then they must be identical. (Hint: what
can you say about the function f − g?) If you want
a derivation, here are two to pick from:

1. Integrating along slices. To obtain an alge-
braic expression for f , observe that that since
the graph is a plane, a slice of f parallel to the
x axis is a straight line, and the slope of this
line is independent of the slice. Let A be the
slope of slices along the x axis, and let B be

the slope of slices along the y axis. Pick a base
point (x0, y0). We want to find f(x, y) in terms
of A, B, and f0. We do so by moving from
(x0, y0) to (x, y) along slices. Moving parallel to
the x-axis first and then parallel to the y-axis,
we have: f(x, y0) = f(x0, y0) + A(x − x0) and
f(x, y) = f(x, y0) + B(y − x0). Putting these
together, we have:

f(x, y) = f0 +A(x− x0) +B(y − y0)

2. Starting with the equation of a plane.
Suppose that the graph of z = f(x, y) is a plane.
Let r0 = (x0, y0, z0) be a point on this plane,
and let ñ = (Ã, B̃, C̃) be a normal vector for this
plane. Since the plane is the graph of a func-
tion, the normal vector must have a component
in the direction of the z-axis, i.e., ñ ·k = C̃ 6= 0.
So we can rescale ñ by −1/C̃, giving a normal
vector of the form n = (A,B,−1). Then the
equation of the plane is:

n · (r− r0) = 0, i.e.,
z − z0 = A(x− x0) +B(y − y0), i.e.,
f(x, y) = f0 +A(x− x0) +B(y − y0).

If we denote the change in f by ∆f := f(x, y) −
f(x0, y0), the change in x by ∆x := x− x0, and the
change in y by ∆y := y − y0, then the formula for a
linear function says:

∆f =
∂f

∂x
∆x+

∂f

∂y
∆y ;

i.e., the change in f is the rate of change of f as you
move in the x direction times the displacement in
the x direction plus the rate of change of f as you
move in the y direction times the displacement in
the y direction.

If we choose the base point to be the origin (0, 0),
then our formula for a linear function says that we
can write f as

f(x, y) = f(0, 0) +Ax+By .

Exercise. Find the linear function f that satisfies
f(0, 0) = 3, f(1, 0) = 8, and f(0, 2) = −1. Answer:
f(x, y) = 3 + 5x− 2y.
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6 Linear approximation

In this section we let f(x, y) be a smooth function
near the point (x0, y0). This means that you can
approximate f by a linear function. More formally:

Proposition 6.1 (Linear approximation). Let
f(x, y) be differentiable at (x0, y0). Then f(x, y) u
L(x, y), where the linear approximation L(x, y) is
given by

L(x, y) := f(x0, y0) + (x− x0)
∂f

∂x

∣∣∣
(x0,y0)

+ (y − y0)
∂f

∂y

∣∣∣
(x0,y0)

.

This should seem intuitively clear to you. It says
that when you move from (x0, y0) to (x, y), the
change in f is approximately the rate at which f
changes as you move along the x axis times the
change in x plus the rate at which f changes as you
move along the y axis times the change in y.

The language of differentials is designed to make
this clear. A small change in x and y is represented
by the “differentials” dx := x− x0 and dy := y − y0

and the resulting small change in f is approximated
by the “differential” df :

Definition 6.2 (Differential).

f(x, y)− f(x0, y0) ≈ df, where

df := dx
∂f

∂x

∣∣∣
(x0,y0)

+ dy
∂f

∂y

∣∣∣
(x0,y0)

Note that the differential df is not the change ∆f .
The differential df is technically defined to be the
change in the linear approximation of f . That is,
L(x, y) = f(x0, y0) + df .

In my opinion, the best way to make sure that you
understand a calculus relationship is to see what it
tells you in the linear case. That is, if you want
to understand why a rule is true, try it out on a
linear function. So take a linear function f(x, y) =
Ax + By + C and plug it into the equations above.
These approximate equalities should become exact
equalities.

The formal definition of differentiability basically
says that the error of the linear approximation is
small:

Definition 6.3 (Derivative). f(r) is differentiable
at (r0) if there is a linear approximation L(r) = C+
n · r = C + Ax + By. (L is a linear approximation
at r0 if as r goes to r0 the error f(r)− L(r) goes to
zero even faster (i.e., lim‖r−r0‖→0

f(r)−L(r)
‖r−r0‖ = 0)).

Exercise. Let f(x, y, z) = x2y3 + z.

1. What is the linear approximation of the func-
tion f near the point (1, 2, 3)?
Answer: 11 + 16(x− 1) + 12(y − 2) + (z − 3).

2. What is the change in f as r goes from (1, 2, 3)
to (1.1, 2, 3.1)? Answer: 1.78

3. What is the differential of the linear approxi-
mation of f near (1, 2, 3) as r goes from (1, 2, 3)
to (1.1, 2, 3.1)? Answer: 1.7.

7 Chain Rule

To derive a chain rule for differentiating functions of
multiple variables, we work with differentials.

Proposition 7.1 (One-variable differentials). Let
u(t) be differentiable. Then

du =
du

dt
dt.

For a small differential du we can substitute this in
to the multivariable formula for differentials to get a
differential form of the chain rule:

Proposition 7.2 (Chain rule for differentials).
Given the functions f(u, v), u(t), and v(t),

df =
∂f

∂u
du +

∂f

∂v
dv

=
∂f

∂u

du

dt
dt+

∂f

∂v

dv

dt
dt.

Dividing the chain rule for differentials by dt gives:

Proposition 7.3 (Chain rule (I)).

df

dt
=
∂f

∂u

du

dt
+
∂f

∂v

dv

dt
.
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Proposition 7.4 (Chain rule (II)). Let u(t, s) and
v(t, s). Holding s constant and applying chain rule
(I) gives

∂f

∂t
=
∂f

∂u

∂u

∂t
+
∂f

∂v

∂v

∂t
.

Again, to see why these propositions are true, check
that they hold for linear functions.

Exercises.

1. Suppose that u(1) = 3, v(1) = 2, ∂f
∂u(3, 2) = 7,

∂f
∂v (3, 2) = 2, du

dt (1) = 2, and dv
dt (1) = −1, and

Find df
dt . Answer: 12.

2. Let f(u, v) = u2v3 Let u(t) = cos(t) and let
v(t) = sin(t). Find d

dtf(u(t), v(t)), (a) using the
multivariable chain rule and (b) by substituting
and differentiating. Answer: −2 cos(t) sin4(t) +
3 cos3(t) sin2(t).

8 Directional derivatives and the
gradient

Definition 8.1 (Directional derivative). The
derivative of f(x, y) in the direction û at the point
r0 = (x0, y0) is just the rate of change of f as you
travel through r0 along a line in the direction û, i.e.,
df(r(t))

dt

∣∣
t=0

, where r(t) = r0 + tû:

Dûf
∣∣∣
r0

=
df(r0 + tû)

dt

=
dx

dt

∂f

∂x
+
dy

dt

∂f

∂y

= u1
∂f

∂x
+ u2

∂f

∂y

=
[
u1

u2

]
·

[
∂f
∂x
∂f
∂y

]

(where derivatives of f with respect to position co-
ordinates are evaluated at r0). So we can write:

Dûf = û · ∇f = |∇f | cos(θ) ,

where the vector ∇f := (∂f
∂x ,

∂f
∂y ) is called the gradi-

ent of f and θ is the angle between û and ∇f . Thus
the directional derivative of f varies between −|∇f |
and |∇f | and is maximized in the direction of ∇f .

Exercises. Let f(x, y) = x2y3.

1. Find ∇f . Answer: 〈2xy3, 3x2y2〉.

2. Find ∇f
∣∣
(1,2)

. Answer: 〈16, 12〉.

3. Find the derivative of the function f(x, y) =
x2y3 near (1, 2) in the direction of the vector
(3, 4). Answer: 96/5. (Hint: what is the direc-
tion vector of (3, 4)?)

4. Find the directions for which Dûf is max-
imized and minimized. Answer: 〈4/5, 3/5〉,
〈−4/5,−3/5〉.

5. Find the directions for which Dûf is zero. An-
swer: ±〈3/5,−4/5〉.

9 Implicit differentiation

Problem 9.1 (Implicit partial derivative). Suppose
that near r0 = (x0, y0, z0) the function f(x, y, z) is
smooth and ∂f

∂z 6= 0. Then the equation

f(x, y, z) = 0 (1)

implicitly defines a function z(x, y) near r0. To find
the partial derivatives of z, we can use the chain rule
to differentiate f(x, y, z(x, y)), being very clear with
notation. As a shortcut, take the differential of (1)
and get

∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz = 0.

If we hold y constant, then dy = 0. Then dz
dx = ∂z

∂x ,
and so

∂z

∂x
=
−∂f

∂x
∂f
∂z

. (2)

Exercise. Let f(x, y, z) := xz2 + yz3. The equa-
tion f = 0 implicitly defines z as a function of x
and y near points on the solution set where ∂f

∂z 6= 0.
Verify that r0 := (2,−1, 2) is on the solution set.
Find ∂z

∂x

∣∣∣
r0

(a) using the implicit differentiation for-

mula (2), and (b) by assuming that z is a function
of x and y, partially differentiating both sizes with
respect to x (which will require you to use the chain
rule!), solving for ∂z

∂x , and evaluating at r0. Answer:
∂z
∂x

∣∣∣
r0

= −1.

4


