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1 Derivation of Conservation Laws

1.1 Context and Conventions

By default quantities are functions of space x and time t.
Let u be the velocity field (which is convecting the contin-

uum).
Let α, β, and q stand for arbitrary (convected) quantities.
Let U(t) stand for an arbitrary convected region (volume

element). (U(t) is simply connected with smooth bound-
ary.)

Let ∂U denote the boundary of the region U .
Let

∫
:=
∫
U(t)

, and let
∮

:=
∫
∂U(t)

, i.e. the default domain

of integration is the arbitrary convected volume element.
Let n denote the outward unit normal to ∂U .

1.2 Kinetics Calculus

Definitions.
Let ∂t := ∂

∂t .

Let ∂j := ∂
∂xj

.

Let dt := ∂t + u · ∇ denote the convective derivative.
Let δ̄t := α 7→ (∂tα + ∇ · (uα)) denote the conservative

derivative. (I made up this term and this symbol. δ̄t is
supposed to be reminiscent of the averaging operator −

∫
and δ signifying differentiation.)

Leibnitz rules.
Observe that δ̄tα = dtα+ (∇ · u)α. Hence:
dt(αβ) = (dtα)β + α(dtβ).
δ̄t(αβ) = dt(αβ) + (∇ · u)αβ

= (dtα)β + α(dtβ) + (∇ · u)αβ
= (δ̄tα)β + α(dtβ)
= (dtα)β + α(δ̄tβ).

Gauss’s Theorem∫
∇α =

∮
nα,

∫
∇ · q =

∮
n · q , and

∫
∇× q =

∮
n× q.

Reynolds’ Transport Theorem.

d
dt

∫
α =

∫
δ̄tα , i.e.

d
dt

∫
U(t)

α =
∫
U(t)

(∂tα+∇ · (uα))

Justification. (Convection applies to U(t), not α(x, t).) Use
time-splitting on the time increment: alternatively allow
α and U(t) to evolve. Then apply Gauss’s Theorem.

d
dt

∫
U(t)

α =
∫
∂tα+

∮
n · uα =

∫
∂tα+

∫
∇ · (uα))

1.3 Conservation Laws

1.3.1 Definitions of Quantities

Let ρ denote mass per volume.
Observe that u is momentum per mass.
Let e denote internal (i.e. thermal) energy per mass.
Observe that 1

2u
2 is macroscopic kinetic energy per mass.

Let g denote body force (force per unit mass).

Let τ denote the stress tensor: n · τ is the surface force per
unit area on an infinitesimal surface element orthogonal
to n, where n points away from the side of the interface
on which the force acts. Thus τij := ei · τ · ej is the com-
ponent in the direction ej of the surface force acting on
the low side of an infinitesimal surface orthogonal to ei.
This stress tensor representation of surface forces is jus-
tified by noting that the sum of the forces must be zero
on an infinitesimal tetrahedron with 3 sides aligned with
the principle axes. Application of conservation of angu-
lar momentum to an infinitesimal cube aligned with the
principle axes shows that the stress tensor is symmetric.
(See Aris or Borisenko and Tarapov.)

Let q denote the heat flux: q · n is the rate of external
flow of heat per unit area across an infinitesimal surface
element orthogonal to n (i.e. the component of the flow
of heat in the direction of n).

1.3.2 Conservation of Mass

d
dt

∫
ρ = 0, i.e. δ̄tρ = 0 , i.e. ∂tρ+∇ · ρu = 0 .

1.3.3 Balance of Momentum

d
dt

∫
ρu =

∮
n · τ +

∫
ρg, i.e.

δ̄t(ρu) = ∇ · τ + ρg (conservation form).

Simplify using Leibnitz rule and conservation of mass:
δ̄t(ρu) =���(δ̄tρ)u + ρ(dtu). So:

ρdtu = ∇ · τ + ρg (simplified form).

1.3.4 Balance of Kinetic Energy

Dot momentum balance with u.

Use ρ(dtu) · u = ρdt(
1
2u · u) = δ̄t(

1
2ρu

2).

Get: δ̄t(
1
2ρu

2) = (∇ · τ) · u + ρg · u.

1.3.5 Conservation of Energy

d
dt

∫
(ρe+ 1

2ρu
2) =

∮
n · τ · u +

∫
ρg · u−

∮
n · q, i.e.

δ̄t(ρe+ 1
2ρu

2) = ∇ · (τ · u) + ρg · u−∇ · q
(energy balance)

We decouple thermal from kinetic energy conservation by
subtracting the kinetic energy balance equation.

We use ∇ · (τ · u) = ∂
∂xi

(τijuj) = τij
∂
∂xi

uj + ( ∂
∂xi

τij)uj
= τ : ∇u + (∇ · τ) · u
(“:” here denotes contraction of two indices).

So ρdte = τ : ∇u−∇ · q (heat balance)

To show energy conservation, assume a potential: g =
−∇χ. Using ρu · ∇χ = ∇ · (ρuχ) − ∇ · (ρu)χ =
∇ · (ρuχ) + (∂tρ)χ = ∇ · (u(ρχ) + ∂t(ρχ)− ρ∂tχ gives:

δ̄t(ρe+ 1
2ρu

2 + ρχ) = ∇ · (τ · u− q) + (∂tχ)ρ

(energy conservation)
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2 Constitutive Relations

2.1 Isotropic linear fluid

Assume that τ = −pδ + σ, where

p = pressure,
δ = identity tensor (2nd order), and
σ = viscous/shear stress tensor

The viscous stress tensor is assumed to depend linearly on
the velocity gradient tensor ∇u.

So σij = Kijkl∂kul for some fourth-order tensor K. Assume
that K is isotropic. Then Kijkl is a linear combination
of products of δs1:

Kijkl = λδijδkl + µδikδjl + νδilδjk.

So σij = λδij∇ · u + µ∇u + ν(∇ · u)T . But since σ is sym-
metric, we must have µ = ν,

so σ = (λ∇ · u)δ + 2µSym(∇u) , where

Sym(∇u) := (∇u + (∇u)T )/2 is the even part of the
velocity gradient, called the rate-of-strain or rate of
deformation tensor. In other words, the symmetry of
the stress tensor means that it depends only on the sym-
metric part of the velocity gradient.2

The Stokes assumption asserts that the trace of the viscous
stress tensor is zero.3 So the scalar pressure p is (defined
to be) minus one third the trace of the stress tensor τ .
This ensures that the translational thermal energy is 3/2
the pressure.

So τ = −pδ + 2µ
(

Sym(∇u)−∇ · u δ /3
)

.

2.2 Incompressible Navier-Stokes.

Assume that the fluid is incompressible: ∇ · u = 0.

Then ∇ · σ = µ4u.

So ρdtu = µ4u−∇p+ ρg.

2.3 Euler equations.

“Eulerian flow” generally refers to flow where there are no
dissipative processes (i.e. no second derivatives). So Eu-
lerian flow assumes that the viscous stress tensor is zero;
equivalently µ = 0 and λ = 0. Hence:

ρdtu = −∇p+ ρg.

1Sir Harold Jeffreys. On isotropic tensors. Proc. Camb. Phil.
Soc. (1973), 73, 173.

2There is a physical reason that the stress tensor depends only on
the symmetric part. Constant antisymmetric velocity gradient tensors
correspond bijectively with rigid-body rotations. The viscous stress
tensor is zero for a fluid undergoing rigid-body rotation. Since the
viscous stress is a linear function of the velocity gradient, it is the
sum of this function evaluated on its symmetric and antisymmetric
parts, so it is a linear function merely of its symmetric part.

3The Stokes assumption is equivalent to the assumption that in-
traspecies collisions exchange no energy with non-translational modes.
I discovered this by comparing the 10-moment isotropic intraspecies
collisional closure for thermal energy with the 5-moment isotropic vis-
cous stress closure, as detailed in my note on the ten-moment closure.

2.3.1 Isentropic Euler.

If the flow is compressible, we can close the system by spec-
ifying a relationship between p and ρ. Pressure is indeed a
function of density in the case of the adiabatic assumption
that there is no heat flow, i.e. entropy is conserved. For an

ideal gas, this implies p = Cργ , where γ is the ratio of spe-

cific heats (i.e. adiabatic/polytropic index) and C remains
constant along particle paths.

2.3.2 Conservative Euler.

For flow in which shock waves occur, entropy is not con-
served, so the adiabatic assumption breaks down and we
must replace the conservation of entropy with the conser-
vation of energy.

For an ideal gas, the internal energy per volume is
ρe = p

γ−1 . Let E denote the energy per volume. So

E = p
γ−1 + 1

2ρu
2. This supplies a relationship between

p and ρ at the cost of introducing a new variable E. But
since E is conserved, we can get a closed system if we
specify the heat flux q = κ∇θ−1, where θ = p/ρ is pro-
portional to temperature and κ is equivalent to heat con-
ductivity.
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