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This document derives relativistic electrodynamics from
classical electrodynamics and the invariance of the interval
defined by the Lorentz metric. See my note on the special
relativistic metric for background.

1 Background: classical electrody-
namics

We begin by reciting the equations of classical electrody-
namics. For a derivation of these laws see my derivation of
the laws of classical physics titled, What is vector calculus
good for?

Classical electrodynamics is governed by Newton’s sec-
ond law (for particle motion),

mpdyvp = Fop, Vp 1= diXp,

(where p is particle index, ¢ is time, m, is particle mass,
X, (t) is particle position, and F,(¢) is the force on the par-
ticle), the Lorentz force law,

F, = ¢ (E+ vy, x B)

(where E(t,x) = electric field, B(¢,x) = magnetic field, and
gp is particle charge), and Maxwell’s equations,

4B +V xE=0, V-B=0,
HE — >V x B = —J/¢, V-E =o0/e,

J:= ZQpréxp; 0= qu5XP7
P 1%

where c is light speed, ¢ is electric permittivity, J is net
current density, o is net charge density, dy, (t,x) := 0(x —
Xp(t)) is the particle density function, and § is the Dirac
delta function (unit spike).

2 Overview

The purpose of this document is to show that the equa-
tions of classical electrodynamics given in the opening sec-
tion become Lorentz-invariant (i.e. invariant under iner-
tial transformations) merely by replacing the velocity v,
with proper velocity ~,v, in Newton’s second law, where
Yo = 1/4/1—=(vp/c)? is the Lorentz factor. (In other
words, the equations of special relativity are the equations
of classical electrodynamics with particle momentum mpvy
redefined to be mpvy,vp.) With this one modification we
will show how to put the fundamental equations of electro-
dynamics in a covariant (i.e. manifestly Lorentz-invariant)
form.

Newton’s second law is invariant under Galilean transfor-
mations, but Maxwell’s equations are not (because they im-
ply the existence of a light speed c).

Einstein (and previously Lorentz) characterized the set
of affine coordinate transformations, called Lorentz trans-
formations (or inertial transformations), which leave light
speed constant and which satisfy the property that if system
A has velocity v in system B then system B has velocity
—v in system A.

As 1 argue in my note on the special relativistic metric,
the set of Lorentz transformations is characterized by the
property that they preserve the interval between events:

(cdt)? — dx - dx = da*dz,,

where, in accordance with the Einstein summation conven-
tion, there is an implicit sum over the index p because it
appears twice in its term both as a superscript and as a
subscript. (We adopt the convention that Greek indices
run from 0 to 3 and Latin indices run from 1 to 3.) The
four-vector dz* has components (dz® = cdt, dzt, dz?, dz3)
and its dual four-position has components (z¢g = 2°, 21 =
—al zy = —2% 23 = —2?). All of special relativity flows
from the invariance of this interval.

Classical electrodynamics is not relativistic. In particu-
lar, Maxwell’s equations are not Galilean-invariant (because
they imply the existence of a light speed; in fact, we will see
that they are already Lorentz-invariant), whereas Newton’s
equations are Galilean-invariant (and therefore not Lorentz-
invariant).

3 Newton’s second law

We first modify Newton’s equations to make them Lorentz-
invariant. To do so we replace vectors with four-vectors
and replace d;, the derivative with respect to coordinate
time ¢, with d,, the derivative with respect to proper time
7, defined to be the rate of elapse of time in the reference
frame of the particle.

Then Newton’s second law becomes

vy =drxy,

mpd, V4 = F*,
where v is called the proper velocity and F is called the
Minkowski force. (We will see that the index value p = 0
makes sense here.) Proper time is by definition indepen-
dent of reference frame, so this version of Newton’s law is
covariant.

3.1 Lorentz factor

We can use the chain rule to relate proper derivatives to
time derivates:

dT = ’Ydh

where v := % is called the Lorentz factor. Thus



To obtain a formula for v we begin with the invariance
of the metric, which implies that an infinitesimal interval
in the frame of the particle equals the interval in observer
coordinates:

(cdr)? = (edt)? — (dx)?, ie.,
(cdt)? = (cd7)? + (dx)?

Dividing the second equation by (cd7)? relates the Lorentz
factor to proper velocity:

=1+ (v/c)*

Differentiating gives a very useful differential relation,

-d—,i.e.,

v
ydy = -
C

<
o |

Dividing the first equation by (cdt)? relates the Lorentz
factor to ordinary velocity:

v 2=1-(v/e).

3.2 Acceleration

We call a := d,.V,, the proper acceleration; the (relativis-
tic) acceleration is defined to be a;, := d;Vy,.

We can infer the zeroth component of the acceleration from
the spatial components of acceleration. Indeed,

20 = ct,

V0 = ydz? = e,
a’ =d; v = edyy = v-div/c

=v-a/c,

0

a =~a’

=v-a/e,

4 Electromagnetic potential evolu-
tion.

We will need to determine how to modify the formula for the
Lorentz force to make it covariant. First we need to express
electromagnetic field in covariant fashion. The easiest mo-
tivated way I know how to do this is to formulate Maxwell’s
equations in terms of vector potentials. (The potential sat-
isfies a wave equation with velocity ¢, which we will see
makes it Lorentz-invariant, whereas Maxwell’s equations as
written above are not manifestly Lorentz-invariant — and
in fact under Lorentz transformation the components of the
electric and magnetic field do not transform like vectors.)

To define potentials we use the homogeneous Maxwell equa-
tions. V - B = 0 implies that we can write B = V x A

for a vector potential A. Substituting into Faraday’s law,
0B+ V xE =0, gives V X (0;A + E) = 0, which says that
we can write 0;A + E = —V¢.

To obtain evolution equations for the potentials A and ¢ we
make the substitutions B -+ V x A and E - —0;A — V¢
in the nonhomogenous Maxwell equations. Electric field
evolution f%—]? + 2V x B = J /ey becomes

(1)

and the electric field divergence constraint V - E = o/¢
becomes

FA - VEA+V (9 + V- A) =T /e

~V?¢ —V - 0,A = g/e.
To see that this is Lorentz-invariant, we divide equation (1)
by 2. Using that

ety (Pp/c) +V - A = 9, A",
where the four potential is defined by

At = (¢/e, A)T,
and adopting the shorthand

Oy =0xn = (0;, V)T and 0" =0x, = (0;,—V)",
so that the D’Alembertian may be expressed by

9,0" = er)® — V2,

electric field evolution says

’@Wny@Mﬂ:Mﬂ, (2)

where we use the Greek index v for the free index to antic-
ipate that this holds even for v = 0. Indeed, in case v =0
equation (2) reduces to

(3)

which is the electric field divergence constraint if we define
the four-current by

9;0 AY — 9°9, A7 = 1y.]°,

JH = (co,I)T.

If we impose the (Lorentz-invariant) Lorentz gauge 0, A" =
0 then electric field evolution simplifies to

]@mmzmy

For justification that one can impose the Lorentz gauge see
the appendix.

5 Force law

We need to put the Lorentz force law into covariant form.
Since we have a covariant representation of potentials, we
can do so by substituting the potential representations B —



V x A and E - —0;A — V¢. As a shortcut we generalize
the Lorentz force law in case E = 0:

F/q=v xB.
Substituting B =V x A,
FI /g = V(@ Ay — 0, A)

The natural generalization is to replace Latin indices with
Greek indices. So defining the antisymmetric electromag-
netic field tensor

Fhy, =" A, — 0, A"

we conjecture the Lorentz force law

Fr/q=v"Fr, |

Indeed, for spatial indices p = j this is
Fi/q=v" (A, - 0,4)
= (ye) (7 Ag — Dy A?) +V*(87 Ay, — 9, A7)
=—()(V(¢/c) + ety A) + v x (V x A)
=7(E+vxB),

which agrees exactly with the original (classical) Lorentz
force law, and for p = 0 it says

F0/q = v'(0°A, — 8,A%)
=vF(0 Ay, — 9, A°)
=V (=0tyA — V(d/c))
=+E-v/c
~0
=ma /q,

as needed.

For reference, the components of the electromagnetic field
tensor are:

0 FE'Yc E?Jc E3Jc

T Elje 0 B> -B? _ |0 ET/c |
v E?/c -B? 0 B! E/c —-BxI|’
E3/c B* -B! 0
or, in manifestly antisymmetric components,
0o -B' —-E?* -E3
v E! 0 —cB?®  ¢B? 0 -ET
cFH = 2 3 1| = .
E cB 0 —cB E cBxI
E* —c¢B? B! 0

6 Definition of current

It remains to verify that the definition of current and charge
density (i.e. four-current) remains unmodified when put in
covariant form. We rewrite current and charge density as

J= Z IpVpOx, o= Z IpOx,
p p

~ Ox Ox
=Y @V, =)
~ pp’Yp ~ pp,yp

Sy - . .
We need that Tp is Lorentz-invariant. Recall that

delta functions are defined by their integrals.
Jo (%) (7pd3x) = 1, we need that to show that ~,d>x
is Lorentz-invariant. Recall that any Lorentz transforma-
tion can be represented as a Lorentz boost along the x axis
preceeded and followed by a rotation. So it is enough to
consider a boost along the z axis with Lorentz factor +,
which takes an infinitesimal region of width dz of simul-
taneous points (dt = 0) in space time and applies a boost
with a Lorentz factor of 7,. The transformed region has
width dz’ = v,da. I remark that the transformed region is

not simultaneous (in fact, dt’ = dz,/1 —~2).

To make this argument concrete, consider a stream of par-
ticles with identical velocity v. Take the primed frame
of reference to be the “rest frame” (the frame in which
the particles are at rest). Let N be the number of par-
ticles crossing the event region (d¢,dz) in the “laboratory
frame”. N is unchanged under change of reference frame.
Projecting (dt’,dz’) onto a simultaneous region (i.e. reset-
ting d¢’ = 0) also does not change the number of parti-
cles crossing the event region (because their velocity is ap-
proximately zero). Let ng be the density of particles in
the primed reference frame. Then the number of particles
N intersecting the event region is N = ngda’ = ng(ydz).
Both N and ng are canonically defined and thus Lorentz-
invariant, so yde must be as well. I remark that we can
also conclude that particle density in the laboratory frame
is n = yng, which is relevant if you consider it more natural
to define current as flux of charged particles and wish to
show that this definition is Lorentz-invariant. Taking this
viewpoint, we note that the current density in the labo-
ratory rest frame is J = gynvp, = gpnoVp. The covariant
generalization J# = g,nov} thus holds if it holds for u = 0,
i.e. if co = gpnoye, which just says that o = gpn.

Since

A Lorentz gauge condition

There is gauge freedom in the choice of potentials. Indeed,
suppose that A" and ¢’ satisfy B =V x A’ and 0,A’ +E =
—V¢' and so do A and ¢. Then

A=A"+V\ b =q¢ — h\

and

(using that we can absorb a constant of integration into \).

Lorentz gauge. Assume that A’ and ¢’ are arbitrary po-
tentials (not satisfying any particular gauge condition). We
want to choose A so that the Lorentz gauge condition holds,
Oy + 2V - A = 0. Substituting, 8;¢/ — 9, + 2V - A’ +
AVIN =0, ie.,

02N — VAN = 8,9 + AV - A

This is a wave equation which we can solve for A (for arbi-
trary choice of A\g and (9¢\)o, so properly we should speak
of a Lorentz gauge rather than the Lorentz gauge).



