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1 Axioms of inertial frames.
Special relativity begins with a set of axioms that constrain
physical laws to satisfy certain invariance properties (called
inertial invariants) under transformations between inertial
coordinate frames (which we will also refer to as inertial
transformations or Lorentz transformations).

1. Relativity. Physical laws are inertially invariant.

This means that inertial coordinate transformation
commutes with writing down (evaluating) physical
laws.

2. Light speed. There exists a speed (called c, the speed
of light) which is an inertial invariant.

This means that for a path x(t), (c dt)2 − (dx)2 = 0 is
an invariant condition under inertial coordinate trans-
formation.

3. Uniform motion. Uniform motion is an inertial in-
variant.

This means that under inertial transformations
straight lines in space-time are mapped to straight
lines, which implies (by considering linear meshes, for
example) that the transformation between inertial co-
ordinate systems is affine. (We assume here that iner-
tial coordinate transformations are invertible.)

4. Classical limit. Classical mechanics holds in the limit
of slow velocities.

In particular, the force must equal the derivative of the
(classical) momentum. (We derive special relativistic
dynamics by writing down laws that are invariant un-
der relativistic inertial transformations and that agree
with classical mechanics in the slow-speed limit.)

Axioms 2 and 3 imply relativistic kinematics; i.e., they con-
strain the set of allowed coordinate transformations.

Axiom 1 is a meta-principle. We take it to imply that the
laws of mechanics (relativistic Newtonian force laws and
Maxwell’s electromagnetism laws) must be invariant with
respect to the class of inertial transformations selected by
the kinematic axioms 2 and 3. We derive relativistic me-
chanics from axioms 1, 4, and relativistic kinematics.

These axioms admit rescaling of space and time by an ar-
bitrary positive or negative scalar. To restrict the class of
inertial transformations so that the relative velocity of one
frame with respect to another uniquely determines the scale
of space and time, it is necessary to impose an additional
symmetry assumption such as:

5′. velocity symmetry. If (the origin of) inertial system
A has velocity v in inertial system B then (the origin
of) B has velocity −v in A.

Axiom 5′ ensures that the “rulers” (or “stop-watches”) used
in system A and B have equivalent scales (or rates).

2 Minkowski 4-space

Minkowski gave an elegant formulation of Einstein’s theory
of relativity in terms of space and (rescaled) time coordi-
nates.

Definition 2.1. The four-vector coordinates of a point
in space-time at time t and position x are defined to be

xµ := (x0, x1, x2, x3)T , where x0 := ct.

Proposition 2.2. The linear part of the coordinate trans-
formation from an unprimed coordinate system to a primed
system is given by dxν

′
= ΣµΛν

′

µ dx
µ, where

Λν
′

µ :=
∂x′ν

∂xµ
.

Convention 2.3 (Einstein summation). An index appear-
ing exactly twice in a product once as a subscript and
once as a superscript implies summation over that index:
Λν

′

µ dx
µ := ΣµΛν

′

µ dx
µ.

Definition 2.4 (Lorentz-invariant). We say that an equa-
tion in 4-space is Lorentz-invariant if transforming it to
another inertial reference frame gives an equivalent equa-
tion. (For example, if dτ (the elapse of “proper time”) is in-
dependent of coordinates, then multiplying Λν

′

µ by the equa-

tion ṽµ := dxµ

dτ defining proper velocity gives ṽµ
′

= dxµ
′

dτ ,
i.e., proper velocity is Lorentz-invariant (i.e. a well-defined
physical quantity independent of coordinates)).

Definition 2.5. The interval between two events sepa-
rated by a displacement (dt, dx) is defined to be (cdt)2 −
(dx)2.

Definition 2.6. The 4-vector scalar product of two vec-
tors vµ and uµ is v0u0− v1u1− v2u2− v3u3. The matrix of
this bilinear form,

ηµν := ηµν :=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ,
is called the matrix of contravariant (or covariant) compo-
nents of the Lorentz metric.

Definition 2.7 (Dual vectors). Observe that multiply-
ing the Lorentz metric by a vector negates the spatial
components. We adopt the convention that the vec-
tors vµ = (v0, v1, v2, v3)T and vµ = (v0, v1, v2, v3) :=
(v0,−v1,−v2,−v3)T are dual vectors of one another.
Then we can write

vµ = ηµνvν and vµ = ηµνv
ν .

Thus by the Einstein summation convention the 4-vector
scalar product of vµ with uµ may be be written

vµuµ = vµηµνu
ν = vµη

µνuν .
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In the next section we argue that Lorentz transformations
are characterized by the requirement that they preserve the
interval between two events. This is equivalent to the re-
quirement that they preserve the Lorentz metric. Indeed,

dxµ
′
dxµ′ := dxµ

′
ηµ′ν′dxν

′
= dxµΛµ

′

µ ηµ′ν′Λν
′

ν dxν ,

which equals dxµηµνdxν =: dxµdxµ if (and in general only

if) Λµ
′

µ ηµ′ν′Λν
′

ν = ηµν .

3 Interval invariance
The purpose of this section is to show that light cone invari-
ance plus velocity symmetry implies interval invariance. We
argue that any inertial transformation is a Lorentz “boost”
(velocity shift) in the x-direction preceeded and followed by
a rotation.

Definition 3.1. The light cone of a reference frame is the
set of all displacement vectors whose interval is zero, i.e.,
whose speed is the speed of light.

Proposition 3.2. Axiom 2 says that inertial transforma-
tions map the light cone to itself.

Definition 3.3. We call positive intervals timelike, nega-
tive intervals spacelike, and zero intervals lightlike. These
terms denote properties that are well-defined (invariant un-
der inertial transformation) due to the invariance of the
light cone, in accordance with the following theorem.

Definition 3.4. The rescaling factor for time is called the
Lorentz factor: γ = dt

dτ , where dτ denotes a time interval
between events in a frame of reference where they occur in
the same position.

Theorem 3.5. For one dimension of space the coordinate
transformation from a primed frame moving at velocity v to
a stationary frame is given by(

ct
x

)
=

[
γ γv/c

γv/c γ

](
ct′

x′

)
. (1)

Proof. Without loss of generality c = 1. Call the lin-
ear transformation Λ. Light speed is invariant, so (1, 1)
and (1,−1) are orthogonal eigenvectors, with eigenvalues,

say, λ1, λ2. So Λ is symmetric. (Indeed, Λ

[
1 0
0 1

]
=[

λ1 + λ2 λ1 − λ2
λ1 − λ2 λ1 + λ2

]/
2.) By Definition 3.4 and the def-

inition of v, Λ · (1, 0) = (γ, vγ), as needed. Remark:
Observe that λ1 = γ(1 + v/c), λ2 = γ(1 − v/c), and
λ1λ2 = γ2(1− (v/c)2).

Corollary 3.6. For one dimension of space the coordinate
transformation from a stationary frame to a primed frame
moving at velocity v is called a boost and is given by(

ct′

x′

)
=

[
γ −γv/c

−γv/c γ

](
ct
x

)
. (2)

Proof. Use assumption 5′.

Theorem 3.7. γ = 1√
1−(v/c)2

, where v is the relative speed

of the one reference frame with respect to the other.

Proof. Compose the Lorentz transformation for a boost
with its inverse:[

1 0
0 1

]
=

[
γ −γv/c

−γv/c γ

] [
γ γv/c

γv/c γ

]
=

[
γ2(1− (v/c)2) 0

0 γ2(1− (v/c)2)

]

Corollary 3.8 (formula for 3D boost). For 3D space the
coordinate transformation from a stationary frame to a
primed frame moving at velocity v is given by(

ct′

x′

)
=

[
γ u/c

u/c I + uu
c2(γ+1)

](
ct
x

)
, (3)

where u := γv and γ2 = 1 + |u/c|2 and note that uu
c2(γ+1) =

(γ − 1) uu
c2(γ2−1) = (γ − 1) uu

|u|2 .

Proof. By tensoriality it is enough to consider the special
case where u = (u, 0, 0), for which:

ct′

x′

y′

z′

 =


γ u/c 0 0
u/c γ 0 0
0 0 1 0
0 0 0 1



ct
x
y
z

 . (4)

Theorem 3.9. The interval between two events is an iner-
tial invariant (and thus well-defined).

Proof. This takes some work. The way I know how to
do this is to explicitly deduce the coordinate transforma-
tion for a boost (an inertial transformation between coor-
dinate systems with aligned spatial axes), and a rotation,
show that they preserve intervals, and argue that all iner-
tial coordinate transformations are compositions of these
two types.

Theorem 3.10. Invariance of intervals characterizes iner-
tial transformations.

Proof. The proof is analogous to proving that distance-
preserving mappings preserve the dot product and hence
are linear orthonormal affine maps. (In this case a non-
positive-definite bilinear form takes the place of the dot
product).

Remark 3.11 (kinematic invariant). The set of linear
transformations Λ that map the light cone to itself is char-
acterized by the property that the interval between any two
events is multiplied by n

√
(det Λ)2.
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