
Maxwellian and Gaussian distributions
by Alec Johnson, February 2011

In this note entropy decreases.

The Maxwellian and Gaussian distributions are the
two working examples of Galilean-invariant entropy-
minimizing closures for the equations of gas dynamics.
The Maxwellian distribution is the assumed distribu-
tion of hyperbolic five-moment gas-dynamics (the com-
pressible Euler equations). The Gaussian distribution
is the assumed distribution of hyperbolic ten-moment
gas-dynamics. A Maxwellian distribution is a normal
distribution that is isotropic in the reference frame of
the fluid. A Gaussian distribution is a distribution that
in the reference frame of the fluid is a product of normal
distributions with possibly different distribution widths
in three principle orthogonal directions.

An entropy-minimizing closure (for a given set of mo-
ments) requires that particle distributions minimize en-
tropy over all distributions which share the same given
moments. Only variation in velocity is considered, not
variation in space. This is consonant with the fact that
collision operators ignore variation of particle density in
space and only consider variation in velocity space. Thus
in this document we ignore variation in space.

Definitions of conserved moments. Let f(t,v) be the
distribution of particle mass over velocity space.

ρ :=

∫
v

f is mass (density),

M :=

∫
v

fv is momentum (density),

E :=

∫
v

fv2/2 is energy (density),

E :=

∫
v

fvv is energy tensor (density),

Definitions of statistical averages. Let χ(v) be a
“generic” moment. Denote and define its statistical av-
erage by

〈χ〉 :=

∫
v
fχ

ρ
.

Primitive variables are naturally defined in terms of sta-
tistical averages:

u := 〈v〉 is bulk velocity,

c := v − u is thermal velocity,

Θ := 〈cc〉 is “temperature” tensor, and

θ := 〈c2/3〉 is “temperature”.

Relationships among primitive and conserved variables

are

ρu = M,

E = (ρu2 + 3ρθ)/2,

E = ρuu + ρΘ,

θ = tr Θ/3,

E = trE/3.

Recall that entropy S is defined by

η := f ln f + αf,

S :=

∫
v

η,

where α is a constant that can be freely chosen; we will
choose α = 3(ln(2π) + 1)/2 to make the formula for the
gas-dynamic entropy simple. Note that

η′ = ln f + (1 + α).

1 Maxwellian case

In the Maxwellian case we minimize S subject to the
constraints that∫

v

f = ρ,

∫
v

vf = M,

∫
v

v2f = 2E .

We use the technique of Lagrange multipliers. Define

g :=

∫
v

η + λ

(
ρ−

∫
v

f

)
+ µ ·

(
M−

∫
v

vf

)
+ ν

(
2E −

∫
v

v2f

)
.

Assume f minimizes entropy. Consider a perturbation
f̃ = f + εf1. Then

0 = dεg|ε=0

=

∫
v

η′f1 − λ
∫
v

f1 − µ ·
∫
v

vf1 − ν
∫
v

v2f1

=

∫
v

f1

(
log f − λ̃− µ · v − νv2

)
,

where λ̃ := λ − α − 1. Since the integral must be zero
for arbitrary perturbation f1 the multiplier of f1 in the
integrand must be zero. Thus, f must be an exponential
of an “isotropic” quadratic polynomial in v:

f = exp
(
λ̃+ µ · v + νv2

)
. (1)

We impose the finiteness requirement that
∫
v
f < ∞;

that is, ν < 0.

It remains to compute the moments of such a polyno-
mial so that we can match them up with the constrained
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moments. We will show that

f =
ρ

(2πθ)3/2
exp

(
−|v − u|2

2θ

)
.

It is evident by completing the square that any expo-
nential of a quadratic polynomial in v of the form (1)
can be put in this form. The issue is whether we indeed
have that ρ =

∫
v
f , ρu :=

∫
v
vf , and ρθ :=

∫
v
fc2/2. So

it remains to confirm these moments by computation.

Shifting into the reference from of the fluid,

f =
ρ

(2πθ)3/2
exp

(
−c2

2θ

)
.

It will be enough to show that:∫
c

f = ρ,∫
c

cf = 0,∫
c

c2f = 3ρθ.

Recall how to integrate a Gaussian normal distribution:∫ ∞
−∞

e−x
2/2 dx

∫ ∞
−∞

e−y
2/2 dy

=

∫ 2π

0

∫ ∞
0

e−r
2/2r dr dθ

= 2π
[
e−r

2/2
]0
∞

= 2π,

so ∫ ∞
−∞

e−x
2/2 dx =

√
2π

so ∫ ∞
−∞

exp

(
−x2

2T

)
dx =

√
2πT .

The first moment is zero by even-odd symmetry:∫ ∞
−∞

x exp

(
−x2

2T

)
dx = 0 .

For the temperature we will need second moments. In-
tegrating by parts,∫ ∞

−∞
x2 exp

(
−x2

2

)
dx

=

∫ ∞
−∞

x

(
x exp

(
−x2

2

))
dx

=

∫ ∞
−∞

exp

(
−x2

2

)
dx

=
√

2π

So ∫ ∞
−∞

x2 exp

(
−x2

2T

)
dx = T

√
2πT .

For density we verify that∫
c

exp

(
−c2

2θ

)
d3c = (2πθ)3/2.

For momentum we compute that∫
c

c1 exp

(
−c2

2θ

)
d3c = 0

by even/odd symmetry.

For temperature we compute that∫
c

c2 exp

(
−c2

2θ

)
=

∫
c1

c21 exp

(
−c21
2θ

)∫
c2

c22 exp

(
−c22
2θ

)∫
c3

c23 exp

(
−c23
2θ

)
= 3θ

√
2πθ.

Maxwellian distributions have the property that the heat
flux q :=

∫
c
cc2f is zero. Indeed,

q =

∫
c

cc2 exp

(
−c2

2θ

)
= 0,

because the integrand is odd.

2 Gaussian case

In the Gaussian case we minimize S subject to the con-
straints that∫

v

f = ρ,

∫
v

vf = M,

∫
v

vvf = E.

We use the technique of Lagrange multipliers. Define

g :=

∫
v

η + λ

(
ρ−

∫
v

f

)
+ µ ·

(
M−

∫
v

vf

)
+ ν

(
E−

∫
v

vvf

)
.

Assume f minimizes entropy. Consider a perturbation
f̃ = f + εf1. Then

0 = dεg|ε=0

=

∫
v

η′f1 − λ
∫
v

f1 − µ ·
∫
v

vf1 − ν :

∫
v

vvf1

=

∫
v

f1

(
log f − λ̃− µ · v − ν : vv

)
.
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Since the integral must be zero for arbitrary perturba-
tion f1 the multiplier of f1 in the integrand must be
zero. Thus, f must be an exponential of a quadratic
polynomial in v:

f = exp (λ+ µ · v + ν : vv) . (2)

We may require that ν is symmetric. We impose the
finiteness requirement that

∫
v
f < ∞; that is, ν < 0,

i.e., ν is negative definite.

We will show that

f =
ρ√

det(2πΘ)
exp

(
−(v − u) ·Θ−1 · (v − u)/2

)
.

That is (shifting into the reference frame of the fluid),

f =
ρ√

det(2πΘ)
exp

(
−c ·Θ−1 · c/2

)
,

where recall that c := v − u.

By substituting the expansion (v− u) ·Θ−1 · (v− u) =
Θ−1 : vv − 2u · Θ−1 · v + u · Θ−1 · u and matching up
with the terms in (2), it is evident that we can complete
the square to put any entropy-minimizing closure in this
form.

The issue is whether we indeed have that ρ =
∫
v
f , ρu :=∫

v
vf , and ρθ :=

∫
v
fcc.

It will be enough to show that∫
c

f = ρ,

∫
c

cf = 0,

∫
c

ccf = ρΘ.

Since Θ is positive definite we may choose orthogonal
coordinates in which it is diagonal. So without loss of
generality Θ = diag(T1, T2, T3).

For the momentum we compute that∫
c

c1 exp
(
−c ·Θ−1 · c/2

)
=

∫
c1

c1 exp

(
−c21
2T1

)∫
c2

exp

(
−c22
2T2

)∫
c3

exp

(
−c23
2T3

)
= 0.

For the density we compute that∫
c

exp
(
−c ·Θ−1 · c/2

)
=

∫
c1

exp

(
−c21
2T1

)∫
c2

exp

(
−c22
2T2

)∫
c3

exp

(
−c23
2T3

)
=
√

2πT1

√
2πT2

√
2πT3

=
√

det(2πΘ).

For the temperature we compute that∫
c

c21 exp
(
−c ·Θ−1 · c/2

)
=

∫
c1

c21 exp

(
−c21
2T1

)∫
c2

exp

(
−c22
2T2

)∫
c3

exp

(
−c23
2T3

)
= T1

√
2πT1

√
2πT2

√
2πT3

= T1

√
det(2πΘ)

and that∫
c

c1c2 exp
(
−c ·Θ−1 · c/2

)
=

∫
c1

c1 exp

(
−c21
2T1

)∫
c2

c2 exp

(
−c22
2T2

)∫
c3

exp

(
−c23
2T3

)
= 0.

Gaussian distributions have the property that the heat
flux tensor q :=

∫
c
cccf is zero (because for any com-

ponent at least one of the three independent integrals
has an odd integrand). (A trivial corrolary is that for
both Maxwellian and Guassian distributions both the
heat flux tensor and the heat flux are zero.)

3 Expressions for entropy.

Now that we have found the distribution that minimizes
entropy, what is the entropy?

Recall the Gaussian distribution,

G =
ρ√

det(2πΘ)
exp

(
−c ·Θ−1 · c

2

)
.

By definition the entropy of the Gaussian distribution is

S =

∫
c

G lnG + αG.

By definition,∫
c

G = ρ.

Observe that

lnG = ln

(
ρ√

det(2πΘ)

)
+
−c ·Θ−1 · c

2
.

To compute
∫
c
G lnG the main result we need is:∫

c

(
c ·Θ−1 · c

)
G = 3ρ.

To verify this claim, choose coordinates in which Θ is
diagonal. By definition of θi,∫

c

(ci)
2G = θiρ, i.e.,

∫
c

(
ciθ
−1
i ci

)
G = ρ.
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Summing over all three dimensions yields the claim.

We now compute the entropy:

S =

∫
c

G lnG + αG

= ρ ln

(
ρ√

det(2πΘ)

)
− 3

2
ρ+ αρ.

= −ρ ln

(√
det(Θ)

ρ

)
+ ρ

(
α− 3

2
− 3

2
ln(2π)

)
.

That is,

S = −ρ ln

(√
det(Θ)

ρ

)

if we choose α = 3 (1 + ln(2π)) /2.

The five-moment formula is a special case:

S = −ρ ln

(
θ3/2

ρ

)
.

4 Number density

Hitherto f has represented mass density. Let f̃ denote
particle number density. Then f̃ = f/m, where m is

particle mass. We define n :=
∫
v
f̃ = ρ/m to be the

number density. So the boxed expressions for particle
distributions become

G̃ =
n

(2πθ)3/2
exp

(
−|v − u|2

2θ

)
for the 5-moment distribution and

G̃ =
n√

det(2πΘ)
exp

(
−c ·Θ−1 · c

2

)
for the 10-moment distribution.

The true temperature T = m〈c2〉/3 is related to
the scalar pressure p = ρ〈c2〉/3 and to the pseudo-
temperature θ := 〈c2〉/3 by the relations

nT = p = ρθ, i.e., θ = T/m.

The true temperature tensor T := m〈cc〉 is related to
the pressure tensor P = ρ〈cc〉 and to the pseudo tem-
perature tensor Θ := 〈cc〉 by the relations

nT = P = ρΘ, i.e., Θ = T/m.

Note that

〈χ〉 =

∫
v
fχ

ρ
=

∫
v
f̃χ

n
.

5 Consistent entropy for interacting species

For a gas with multiple species we should define the en-
tropy of each species consistently so that the total en-
tropy obeys an entropy inequality when species interact.
For such a consistent entropy we define the true entropy
of each species in terms of the number density rather
than the mass density:

η̃ := f̃ ln f̃ + α̃f̃ , S̃ :=

∫
v

η̃.

(In this section the casual reader may regard blue text

as an arbitrary irrelevant constant.) Since f̃ = m−1f ,

η̃ = f̃ ln(m−1f) + α̃f̃

= m−1η + (lnm−1 + α̃− α)f̃ .

So

S̃ =

∫
v

η̃ =

∫
v

m−1η + (lnm−1 + α̃− α)f̃

= m−1S + (lnm−1 + α̃− α)n.

Recall that for f = G,

S = −ρ ln

(√
det(Θ)

ρ

)
+ ρ

(
α− 3

2
− 3

2
ln(2π)

)
.

So for f̃ = G̃,

S̃ =− n ln

(√
det(Θ)

ρ

)
+ n

(
α− 3

2
− 3

2
ln(2π)

)
+ n

(
lnm−1 + α̃− α

)
=− n ln

(√
det(T)

n

)

+ n

(
α̃+

3

2
lnm− 3

2
− 3

2
ln(2π)

)
.

That is, a consistently defined ten-moment entropy is

SG := −n ln

(√
det(T)

n

)
,

where we define the ten-moment entropy of a distri-
bution to be the entropy it would have if it were re-
laxed to minimum entropy without changing the first
10 gas-dynamic moments and where we have chosen
α̃ = 3

2 (1 + ln(2π/m)).

As a special case a consistently defined five-moment en-
tropy is:

SM = −n ln

(
T 3/2

n

)
,

where we define the five-moment entropy of a distribu-
tion to be the entropy it would have if it were relaxed to
minimum entropy without changing the five conserved
moments.
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