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We first briefly recount the derivation of the 10-
moment system. This development is given in
greater detail and generality in my note General
Moment Evolution.

1 Boltzmann equation.

The Boltzmann equation evolves particle mass den-
sity functions fs(x,v, t) (of position, particle veloc-
ity, and time) for each species s, where fs|d3x∧d3v|
is the amount of mass of species s in the infinitesi-
mal phase space volume |d3x ∧ d3v|. (We will con-
sider two-species hydrogen plasmas; i and e will de-
note ion and electron species indices.) The Boltz-
mann equation asserts conservation (or balance) of
particles in phase space,

∂tfs +∇x · (vfs) +∇v ·
(
qs
ms

(E + v ×B)fs

)
= Cs,

where qs = ±e is particle charge, ms is particle
mass, E is electric field, B is magnetic field, and Cs
is the collision operator.

The collision operator is the sum of collision oper-
ators representing interaction with each species:

Cs = C̃s +
←→
C s,

where C̃s, an intraspecies collision operator, is a
function of v 7→fs(t,x,v), and where

←→
C s :=

∑
p 6=s

←→
C sp

represents the net affect of all other species p;←→
C sp is an interspecies collision operator which rep-

resents the affect on species s of collisions with
species p and is a function of v 7→ fs(t,x,v) and
v 7→ fp(t,x,v). We adopt the conventions that a
bidirectional arrow over a symbol indicates interac-
tion between two different species and that when
two indices are shown the first index indicates the
species acted upon.

The Boltzmann equation is coupled to Maxwell’s
equations,

∂tB = −∇×E, ∇ ·B = 0,

∂tE = c2∇×B − J/ε0, ∇ ·E = σ/ε0,

where c is the speed of light, ε0 is the permittivity
constant, the net charge density σ is the sum of the
charge densities σs := qs

´
v fs of each species, and

the net current density J is the sum of the current
densities Js := qs

´
v fsv of each species.

We will henceforth assume a default species index
s and generally will use an explicit species index
only when when referring to interaction with an-
other species p.

2 Generic 10-moment model

2.1 “Conserved” variables. Multiplying the
Boltzmann equation by powers of v and integrating
over all v yields generic gas-dynamic equations for
the 10-moment model. For each species the zeroth
moment (v0 = 1) asserts conservation of mass,

∂tρ +∇ · (ρu) = 0;

and (dividing by particle mass m) conservation of
particle density,

∂tn +∇ · (nu) = 0;

the first moment (v1 = v) asserts balance of mo-
mentum

∂t(ρu) +∇ ·E =
q

m
ρ(E + u ×B) + R;

and the second moment (v2 := vv := v⊗ v) yields
energy tensor evolution,

∂tE + 3∇ · Sym(uE)− 2∇ · (ρuuu) +∇ ·q

=
q

m
2 Sym(ρuE + E ×B) + 2 Sym(uR) + Q,

where the tensor symmetrization operator Sym de-
notes the average over all permutations of sub-
scripts of its argument tensor; the variables in
these gas-dynamic equations are defined as follows:
ρ :=

´
v f is is mass density, n = ρ/ms is par-

ticle density, u =
´
v fv/ρ is bulk fluid velocity,

c := v−u is thermal particle velocity, E :=
´
v fvv

is the energy tensor, q :=
´
v fccc is generalized

heat flux, R :=
´
v Cc is resistive drag force on

species s, and Q :=
´
v Ccc is the collisional thermal

energy source.

It is convenient to decompose the resistive drag
force and the collisional thermal energy into con-
tributions from each species:

R =
∑
p 6=s

←→
R p, Q = R +

∑
p 6=s

←→
Q p;
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here
←→
R p :=

´
v

←→
C pc represents resistive drag force

from species p,
←→
Q p :=

´
v

←→
C pcc represents gen-

eralized heating due to collisions with species p,
and R :=

´
v C̃cc represents pressure change (typ-

ically relaxation toward isotropic pressure) due to
intraspecies collisions. For intraspecies collisions,
conservation of momentum says R̃ :=

´
v C̃c = 0.

Also, in case collisions involve no exchange of en-
ergy with nontranslational modes, conservation of
energy says tr R =

´
v C̃c

2 = 0.

These generic balance laws do not constitute a
closed system; we need to specify the heat fluxes
q, the resistive drag forces R, and the collisional
thermal sources Q in terms of the evolved state vari-
ables. To this end we now transform to primitive
variables.

2.2 Pressure (thermal energy) tensor evo-
lution. Physical laws should be invariant under
change of reference frame, so we express moment
evolution equations for second-order and higher
moments in terms of primitive variables (which
are defined relative to the center of mass velocity)
rather than conserved variables when we seek clo-
sure relations. More generally, as is necessary in
the relativistic case, one seeks closure specifically
by first transforming the system into the reference
frame of the fluid.

The energy tensor may be written as the sum of
a kinetic energy tensor and a thermal energy ten-
sor: E = ρuu +P, where the thermal energy tensor
P :=

´
v fcc is also known as the pressure tensor.

For the nonrelativistic 10-moment system trans-
forming to primitive variables means replacing the
evolution equation for the energy tensor with an
evolution equation for the pressure tensor. To get
the evolution equation for the pressure tensor you
can multiply the Boltzmann equation by cc and
integrate over all velocities. Alternatively, you can
multiply the momentum equation by bulk fluid ve-
locity to get a kinetic energy tensor evolution equa-
tion and subtract it from the energy tensor evolu-
tion equation.

In terms of the pressure tensor the energy tensor
evolution equation can be written

∂tE +∇ · (uE) + 2 Sym∇ · (Pu) +∇ ·q

=
q

m
2 Sym(ρuE + E ×B) + 2 Sym(uR) + Q.

Multiplying the momentum evolution equation by
2u, taking the symmetric part, and assuming a
smooth solution gives the kinetic energy tensor evo-
lution equation

∂t(ρuu) +∇ · (ρuuu) + 2 Sym(u∇ ·P)

=
q

m
2 Sym(ρuE + ρuu ×B) + 2 Sym(uR).

Subtracting the kinetic energy tensor evolution
equation from the energy evolution equation gives
the pressure tensor evolution equation

∂tP +∇ · (uP) + 2 Sym(P ·∇u) +∇ ·q

=
q

m
2 Sym(P ×B) + Q

(where we have used that 2 Sym(∇ · (Pu) −
u∇ ·P) = 2 Sym(P ·∇u)).

2.3 Temperature evolution. A way to ob-
tain closure is to assume the form of the distribu-
tion of particle density as a function of velocity and
then evaluate the moments of the collision integral
in terms of the parameters of the particle density
distribution. We do not take this approach here; in-
stead, we will seek a definition of entropy such that
entropy is conserved for smooth flow in the absence
of diffusive terms (heat flux and collisional thermal
sources). We will then impose the requirement that
the collisional terms may only allow entropy to in-
crease; in combination with the requirement that
the closure be isotropic and linear this will reveal
the form of the closure.

A related generic procedure that avoids explicit
evaluation of collision integrals is to determine local
thermodynamic equlibrium in the reference frame
of the fluid; one then posits that collisions relax
the state of the fluid toward the equilibrium state.
Since thermodynamic equilibrium maximizes en-
tropy and relaxation toward equilibrium increases
entropy, this procedure may be viewed as underly-
ing the procedure we employ.

The requirement that entropy increase is essentially
a requirement that the closure yield a well-posed
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partial differential equation without any source
terms that would cause exponential growth; that
is, there should be no antidiffusive terms and no
exponential growth.

In the absence of heat flow and collisional source
terms we expect entropy to be preserved along par-
ticle paths. Entropy is a thermodynamic concept,
and thermodynamics is the study of equilibrium, so
the entropy should be a function of state variables
independent of reference frame and without refer-
ence to temporal or spatial derivatives or frame of
reference. So neglecting q and Q we seek to write
the pressure evolution equation in the form dts = 0
for some appropriately defined s which should rep-
resent the entropy per mass.

Hence we first write mass conservation and pressure
tensor evolution as material derivatives. Conserva-
tion of mass becomes

dtρ + ρ∇ ·u = 0;

Solved for ∇ ·u conservation of mass says that the
divergence of the fluid velocity is minus the convec-
tive logarithmic derivative of the mass (or particle)
density:

∇ ·u = −ρ−1dtρ = −dt ln ρ = −dt lnn.

To rewrite pressure evolution in terms of the con-
vective derivative we first write it in terms of the
“bulk derivative” δ̄t, defined by

δ̄tα := ∂tα+∇ · (uα) = (dt +∇ ·u)α (∀α).

Then:

δ̄tP + 2 Sym(P ·∇u) +∇ ·q

=
q

m
2 Sym(P ×B) + Q.

Conservation of mass (δ̄tρ = 0) implies that the
bulk derivative of a density per volume is the vol-
ume density of the convective derivative of density
per mass:

δ̄t(ρβ) = ρdtβ (∀β) .

So to get a simple equation with a convective
derivative we define the temperature tensor to
be the pressure tensor divided by the number den-
sity, i.e.,

T := P/n.

(Since he is dealing with only one species, Lever-
more (see references) instead defines the pseudo
temperature tensor Θ := P/ρ = T/m.) Substi-
tuting into the pressure tensor evolution equation
gives us temperature tensor evolution,

ndtT + 2n Sym(T ·∇u) +∇ ·q

=
q

m
2n Sym(T ×B) + Q.

3 Generic 5-moment model

Every tensor equation that has appeared so far in
this note has a corresponding scalar equation ob-
tained by taking (half) its trace. Therefore for in-
spiration we derive entropy evolution for the scalar
case, taking care to choose steps that generalize
straightforwardly to matrices. The generalization
will require us to delay taking the trace.

To ensure that an isotropic pressure tensor is the
scalar pressure times the identity matrix, the scalar
pressure is defined to be one third the trace of the
pressure tensor, and likewise for the temperature:

p := tr P/3,
T := tr T/3 = p/n.

(Levermore instead defines the pseudo temperature
θ := tr Θ/3 = p/ρ.) Observe that p = nT. The
energy density is defined to be half the trace of the
energy tensor,

E := tr E/2.

Half the trace of the relation E = P + ρuu yields

E =
3

2
p + ρu2/2.

We now take the trace of the tensor equations seen
so far. Energy tensor evolution yields scalar energy
evolution,

∂tE +∇ · (uE + u ·P) +∇ ·q
= J ·E + u ·R +Q,

where the heat flux vector is defined to be half the
trace of the heat flux tensor, 2q := tr q =

´
v fc

2c,
and the collisional heating term is half the trace of
the collisional thermal energy tensor source, 2Q :=
tr Q =

´
v Cc

2. Half the trace of the decomposition

3



of the collisional thermal energy tensor source yields
the scalar decomposition of the heat source,

Q = Q̃ +
∑
p 6=s

←→
Q p,

where 2Q̃ := tr(R) and 2
←→
Q p := tr(

←→
Q p).

Half the trace of pressure tensor evolution yields
thermal energy evolution (i.e. scalar pressure evo-
lution),

3δ̄tp/2 + p∇ ·u +∇ ·q = σ :∇u +Q,

where we have decomposed the pressure tensor into
a scalar pressure p and an anticipated viscous stress
tensor, P =: pI − σ, where I is the identity tensor.
Substituting p = nT or taking half the trace of
temperature tensor evolution gives thermal energy
evolution in terms of scalar temperature,

n3dtT/2 + nT∇ ·u +∇ ·q = σ :∇u +Q.

4 Derivation of entropy for the 5-moment
model (scalar energy, pressure, and tem-
perature)

Basic thermodynamics says that the differential
change in entropy (of a component of a system
in thermal equilibrium) is the differential heat ab-
sorbed divided by the temperature of the system,

dS =
dQ

T
.

Multiplying the thermal energy evolution equation
by T−1 (and force-factoring out n) gives

n(3dt lnT/2− dt lnn) + T−1∇ ·q
= T−1σ :∇u + T−1Q,

i.e.,

ndt ln(T 3/2n−1)

= −T−1∇ ·q + T−1σ :∇u + T−1Q.

So we define the entropy density per particle num-
ber (“molar” entropy) to be

s := ln(T 3/2n−1)

and the entropy per volume to be

S := ns = n ln(T 3/2n−1).

So in the absence of heat flux, resistive heating,
and viscous stress, molar entropy is conserved along
particle paths.

5 Derivation of 5-moment closure

5.1 Closure requirements. To obtain closure
we will invoke the following principles:

1. Momentum and energy are conserved,

2. Entropy cannot decrease,

3. Physical laws are invariant under rotation,

4. Functions can be approximated as linear.

When we study closures for the interaction of a gas
with itself we will mostly assume isotropy, ignor-
ing the symmetry-breaking effected by the presence
of other species or electric and magnetic fields, ex-
cept for occasional references to gyrotropy in the
presence of a strong magnetic field. The justifi-
cation for this is that only the magnetic field is
typically strong enough that we cannot invoke ap-
proximate linearity to decouple its effects from the
self-interaction of a single species.

5.2 Entropy evolution. To find closure for
the 5-moment system we will require that the en-
tropy be nondecreasing. Specifically, we require the
integral over the entire domain of the entropy per
volume to be nondecreasing. The entropy per vol-
ume obeys the evolution equation

δ̄tS = −T−1∇ ·q + T−1σ :∇u + T−1Q.

We integrate over all space. Using the Reynolds
transport theorem (

´
δ̄t = dt

´
),

dt

ˆ
S =−

ˆ
T−1∇ ·q

+

ˆ
T−1σ : Sym(∇u) +

ˆ
T−1Q,

where we have used that σ :∇u = σ : Sym(∇u)
by symmetry of σ. This equation is a form of the
general formula ds = T−1 dq used to define entropy.
We require that the heat flux closure, viscous stress
closure, and collisional closures each independently
increase the entropy.

5.3 Heat flux closure. Using integration by
parts (and assuming a closed system, i.e. vanishing
heat flux at the boundary),

−
ˆ
T−1∇ ·q =

ˆ
q ·∇T−1.
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We are thus lead to seek a heat flux closure for
which q ·∇T−1 is nonnegative. We posit that q is
a linear function of ∇T−1.

5.3.1 Istropic closure. The simplest closure as-
sumes that this relation is isotropic, i.e.,

q = κ∇T−1 = − κ

T 2
∇T ,

where κ := κ
T 2 is called the heat conductivity and

may be determined experimentally or by a collision
integral. Nonnegativity of q ·∇T−1 = κ‖∇T−1‖2
is ensured as long as κ is nonnegative.

5.3.2 Gyrotropic closure. In the case of nonneg-
ligible magnetic field B = ‖B‖b we instead merely
assume a gyrotopic closure,

q =
(
κ⊥I⊥ + κ∧I∧ + κ‖I‖

)
·∇T−1,

where we have used that every gyrotropic second-
order tensor is a linear combination of the perpen-
dicular, skew, and parallel gyrotropic tensors

I⊥ := I− bb, I∧ := I× b, I‖ := bb.

For this closure, to ensure that q ·∇T−1 ≥ 0, the
parallel and perpendicular heat conductivities must
be nonnegative,

κ⊥ ≥ 0, κ‖ ≥ 0.

5.4 Viscous stress closure. To ensure that
the contribution of viscous stress to entropy change
is always positive, we will require that σ : Sym(∇u)
(which is the local rate of production of thermal
energy) be everywhere positive. We will require
that σ (the viscous stress) be a linear function of
Sym(∇u) (i.e. of the gradient of velocity).

5.4.1 Isotropic closure. For a single species in
the absence of a magnetic field we may assume
isotropy. As argued in the appendix, if A and B
are symmetric second-order tensors and A is an
isotropic linear function of B, then A = 2µB +
λ tr B I. So we may write

σ = λ∇ ·u I + 2µSym(∇u) ,

where λ and µ are called Lamé coefficients. Let
u = Sym(∇u). Then

σ :∇u = σ ·u = λuiiujj + 2µujkujk.

This needs to be positive for any u. While the coef-
ficients of λ and µ are both nonnegative, they can-
not independently be zero, so we cannot conclude
that λ and µ must be positive. So we rewrite u as
the sum of a traceless and an isotropic tensor:

u = s+ I tr u/3,

where s (the rate of pure shear) is evidently u −
I tr u/3, and I tr u/3 is the rate of hydrostatic com-
pression. Then

σ :∇u = 2µ sjksjk + (λ+ 2µ/3)uiiujj .

In case u is proportional to I, s must be zero, and
for incompressible flow uii must be zero. So the nec-
essary (and clearly sufficient) condition for σ :∇u
to be nonnegative is that the viscosity µ and the
“bulk modulus” K := (λ + 2µ/3) be nonnegative.
That is,

µ ≥ 0, λ ≥ −2µ/3.

The Stokes assumption is that the viscous stress
tensor is traceless, i.e., tr σ = (3λ + 2µ)∇ ·u = 0,
i.e., K = 0, i.e., λ = −2µ/3.

5.4.2 Gyrotropic closure. In the presence of
a magnetic field strong enough to substantially
distort the particle velocity distribution from a
Maxwellian we would merely require a gyrotropic
linear relationship, involving as many as 12 inde-
pendent parameters to be determined by experi-
ment or collision integral.

5.5 Collisional closure. We will assume that
(intraspecies) collisions involve no exchange of en-
ergy with nontranslational modes (2Q̃ = tr R = 0).

For interspecies collisional closure we require that

1. the total momentum be conserved,

←→
R ie +

←→
R ei = 0,

2. the total energy be conserved,

ui ·
←→
R ie +

←→
Q ie + ue ·

←→
R ei +

←→
Q ei = 0,

3. the total entropy of the two species be nonde-
creasing,

T−1i

←→
Q ie + T−1e

←→
Q ei ≥ 0.
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We also require that the closure be a reference-
frame-invariant function of the state variables (i.e.
the moments) of the two gases. Thus it should be
a function of the densities of the gases, the inter-
species drift velocity ui − ue, their temperatures,
and the magnetic field. First-order Taylor series
expansion will allow us to linearize and thus decou-
ple these dependencies.

5.5.1 Interspecies frictional drag. In case the in-
terspecies drift velocity is zero, the resistive force←→
R ie should be zero.1 Therefore we conclude that
in the linear expansion

←→
R ie should be a linear func-

tion of the drift velocity,

←→
R ie = η̃ · (ue − ui), .

where η̃ is a gyrotropic positive-definite tensor of

drag coefficients.

For a fixed velocity distribution shape,
←→
R ie should

be jointly proportional to the densities of the inter-
acting species. So we can write

η̃ = −σiσeη,

where σi := eni and σe := −ene are charge densities
and the resistivity tensor η dynamically depends

solely on the temperatures or temperature tensors
(since temperature is the only information available
regarding the shape of the velocity distributions).
In the usual quasineutral case where n :≈ ne ≈ ni,

←→
R ie = neη ·J .

5.5.2 Interspecies frictional heating. The rate of
change of total kinetic energy due to drag is

←→
R ie ·ui +

←→
R ei ·ue =

←→
R ie · (ui − ue).

On the assumption of linearity we can decompose

the interspecies heatings
←→
Q ie into frictional heat-

ing Qfie (arising from interspecies drift velocity) and

1 Indeed,
←→
R ie would need to be a gyrotropic linear func-

tion of scalars (the temperatures and densities). Reflecting
the domain along the axis of the magnetic field leaves the

magnetic field (a pseudovector) unchanged but reverses
←→
R ie,

whereas a 180-degree rotation in a plane containing the axis
of the magnetic field would reverse both vectors. Composing

such a rotation with a reflection, we conclude that
←→
R ie = 0.

thermal heat exchange Qtie = −Qtei which depends
on the relative temperatures and densities.

Conservation of energy requires that the frictional
heating balance the loss of kinetic energy due to
drag:

Qfie +Qfei =
←→
R ie · (ue − ui).

To ensure that entropy is respected, resistive drag
warming should be positive for both species.

Consideration of collisions indicates that resistive
heating should be distributed among the species in-
versely as the particle masses2:

Qfie

Qfei
=
me

mi
.

5.5.3 Interspecies heat transfer. In case the in-
terspecies drift velocity is zero, heat may be ex-
changed. Conservation of energy says that

Qtie +Qtei = 0.

The entropy inequality says that heat cannot flow
from cold to hot. So no heat should be exchanged
if the temperatures of the species are equal. So a
linear expansion says that

Qtie = K(Te − Ti),

where we expect the thermal equilibration coeffi-
cient K to be proportional to the species densities
and to depend on temperature.

2 Consider a collision between two particles. In the center-
of-mass frame conservation of momentum and energy say
that the magnitude of the velocity does not change and the
that the angle of deflection of the two particles is the same.
So in the center of mass frame the ratio of the changes in
kinetic energy is the reciprocal of the ratio of the masses. In
symbols:

mi‖v′i − vi‖ = me‖v′e − ve‖.
∆(miv

2
i )

∆(mev2
e)

=
mi(v

′
i + vi) · (v′i − vi)

me(v′e + ve) · (v′e − ve)

=
mi‖(v′i + vi)/2‖ · ‖v′i − vi‖ cos θ

me‖(v′e + ve)/2‖ · ‖v′e − ve‖ cos θ
=
‖v′i − vi‖
‖v′e − ve‖

=
me

mi
.
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The total entropy production is then

T−1i Qtie + T−1e Qtei

= (T−1i − T−1e )Qtie

= (T−1i − T−1e )Kρiρe(Te − Ti)

=
(Te − Ti)2

TiTe
Kρiρe

≥ 0.

6 Generalization of entropy to the 10-
moment case

6.1 Principal normal decomposition To
study the 10-moment model it is useful to use the
principal normal decompositions

T = T1e1e1 + T2e2e2 + T3e3e3,

P = p1e1e1 + p2e2e2 + p3e3e3,

where e1, e2, e3 are eigenvectors, T1, T2, T3 are the
eigenvalues of T, and pi = nTi. Recall that the
scalar temperature is one third the trace of the tem-
perature tensor, and likewise for the pressure:

T =
T1 + T2 + T3

3
,

p =
p1 + p2 + p3

3
.

6.2 Heuristic derivation of entropy (10-
moment). A heuristic derivation of the entropy
of a 10-moment system is to regard the distribution
of particle velocities in each of the three principal
directions as a distinct subsystem. The sum of the
entropies of these subsystems is the entropy of the
system as a whole.

The entropy can be understood as a state func-
tion of an equilibrium distribution. In general
the equilibrium velocity distribution is Maxwellian,
but if through some mysterious constraint colli-
sions were unable to transfer energy among princi-
pal directions of the temperature tensor the equilib-
rium would instead be a product of 1-dimensional
Maxwellian distributions (i.e. a Gaussian distribu-
tion, which is the naturally assumed distribution for
the adiabatic 10-moment model) and the entropy
would be the sum of the one-dimensional entropies,

Résumé of the 5-moment closure.

To recapitulate, an entropy-respecting isotropic lin-
earized 5-moment multi-fluid closure is

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρuu) +∇p

=
q

m
ρ(E + u ×B) +∇ ·σ + R,

∂tE +∇ · (u(E + p)) +∇ ·q
= ∇ · (σ ·u) + J ·E + u ·R +Qf +Qt,

where

3/2p := E − ρu2/2,
J := (q/m)ρu,

σ = 2µ(Sym(∇u)−∇ ·u I/3),
←→
R p = η̃pρρp(up − u),

R =
∑
p

←→
R p

n := ρ/m,

T := p/n,

q = −κ̃ρ∇T,

Qf =
∑
p

←→
R p · (up − u)

mp

mp +m
,

Qt =
∑
p

K̃pρρp(Tp − T)

where p denotes other species and I have altered
the coefficients to suggest typical dependency on
the state; the heat conductivity is κ := κ̃ρ. To
respect entropy we require that

µ ≥ 0, (viscosity)

η̃p ≥ 0, (drag coefficient)

κ̃ ≥ 0, (heat flux coefficient)

K̃p ≥ 0. (heat transfer coefficient)
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again yielding the formula

2s = ln
T1

n2/3
+ ln

T2

n2/3
+ ln

T3

n2/3
= ln

T1T2T3
n2

= ln
detT
n2

.

6.3 10-moment versus 5-moment entropy.
The 10-moment formula for entropy is less than or
equal to the 5-moment formula:

1

2
ln

(
detT
n2

)
≤ 1

2
ln

(
T 3

n2

)
,

with equality if and only if T is isotropic; to verify
this claim, use the principal normal decomposition
and the monotonicity and convexity of the loga-
rithm (so use that the arithmetic average exceeds
the geometric average).

6.4 Generation of entropy (10-moment).
Regarding the principal normal decomposition of
the temperature/pressure tensor as a partition into
subsystems, the entropy generated is the total en-
tropy generated in the three subsystems, yielding
the generic formula

dS =
∑
i

dQi
Ti

= T−1 :Q = tr
(
T−1 ·Q

)
.

6.5 Derivation of entropy evolution (10-
moment). We repeat the derivation of entropy
generalizing from the scalar case to the 10-moment
case. Recall temperature tensor evolution,

ndtT + 2n Sym(T ·∇u) +∇ ·q

=
q

m
2n Sym(T ×B) + Q.

In the scalar case we multiplied by T−1, so to gen-
eralize we multiply by T−1; taking the trace should
then give us a generalization of entropy which
agrees with the scalar definition in the isotropic
case.

Jacobi’s formula asserts that the differential of the
determinant is the trace of the matrix product of
the adjugate with the differential (where the adju-
gate is defined by adjT := (detT)T−1):

dt detT = tr(adjT · dtT)

= (detT) tr(T−1 · dtT), i.e.,

dt ln detT = tr(T−1 · dtT).

Thus, multiplying temperature tensor evolution by
T−1 (and factoring out n) and taking the trace
yields:

n(dt ln detT − 2dt lnn) + T−1 : (∇ ·q) = T−1 :Q,

where we have used that

tr
(
T−1 · Sym(T ·∇u)

)
= ∇ ·u = −dt lnn

and that

tr
(
T−1 · 2 Sym(T ×B)

)
= 0.

So

ndt ln(n−2 detT) = −T−1 :∇ ·q + T−1 :Q.

So we define the entropy density per particle num-
ber (“molar” entropy) to be

s := ln
(
n−2 detT

)
/2

(and the entropy per volume to be S := ns), which
agrees with the scalar case.

7 Derivation of 10-moment closure

The entropy per volume obeys the evolution equa-
tion

2δ̄tS = −T−1 : (∇ ·q) + T−1 :Q.

Integrating over the domain,

2dt

ˆ
S =

ˆ
Sym(∇T−1) ··· q +

ˆ
T−1 :Q,

where we have used integration by parts and as-
sumed vanishing heat flux at the boundary,

−
ˆ

tr
(
T−1 · (∇ ·q)

)
=

ˆ (
∇T−1

) ··· q
=

ˆ (
Sym(∇T−1)

) ··· q.
As in the scalar case, we require that each integrand
independently increase the entropy, thus decoupling
the heat flux closure and the collisional closures.

7.1 10-moment heat flux closure. We re-
quire that the integrand involving heat flux be ev-
erywhere positive. Toward this end, we posit that
the heat flux is a linear function of its complement
in this inner product:

q = C ··· Sym
(
∇T−1

)
,

where C is a sixth-order tensor of coefficients.
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7.1.1 Isotropic closure. The assumption of
isotropy makes it easy to ensure positivity. To see
how, suppose that C is an isotropic sixth-order
tensor, and let A be an arbitrary symmetric
third-order tensor. Since C is isotropic, we can
write it as a linear combination of tensor products
of the identity matrix, C =

∑
pC

p. To ensure that

A ··· C ··· A is positive it is enough to ensure that
A ··· Cp ··· A is positive. Considering representative
cases, we have

AijkδinδjmδklAlmn = AijkAkji = |A|2 ≥ 0 and

AijkδijδklδmnAlmn = AiikAkmm = | trA|2 ≥ 0;

note the critical role of the symmetry of A.

Assuming that the heat flux tensor is an isotropic
linear function of the symmetric part of the gradient
of the inverse of the temperature tensor yields the
Levermore form of the closure for the heat flux ten-
sor. As argued in the appendix, if A and B are sym-
metric third-order tensors and A is a linear isotropic
function of B, then A = µB + λ Sym(I tr B). So

q = a09 I Y tr
(
∇ Y T−1

)
+ a13∇ Y T−1 ,

where I am using the symbol Y to denote the sym-
metric tensor product (that is, the symmetrization
of the tensor product):

A YB := Sym(A⊗B) (∀A,∀B).

Levermore denotes the symmetric (outer) tensor
product by the symbol ∨, but I have used a modified
symbol out of concern that ∨ ought to be defined
analogously to the wedge product.

McDonald and Groth, however, using a Chapman-
Enskog expansion, obtain the following closure
[McDonaldGroth08]:

q ∝ 3 Sym (P ·∇T) .

7.1.2 Agreement of isotropic 10-moment heat flux
closure with isotropic 5-moment heat flux closure.
In the isotropic case, T = T I, the trace of this clo-
sure should agree with the 5-moment heat flux clo-
sure. Assuming isotropy, tr(3∇ Y T−1) = tr(3I Y
∇T−1) = 5∇T−1 and 9 tr

(
I Y tr

(
∇ Y T−1

))
=

3 tr
(
I Y 5∇T−1

)
= 25∇T−1, so the trace of the 10-

moment heat flux closure becomes

2q = (a025 + a15)∇T−1,

7.1.3 Gyrotropic closure. In the case of a mag-
netized plasma, one would merely require that q
be a linear gyrotropic function of Sym(∇T−1), re-
sulting in up to 26 independent parameters to be
determined by experiment or collision integral.

7.2 10-moment collisional closure. For the
collisional heating terms we need that T−1 :Q =

T−1 ·R +
∑

p T−1 ·
←→
Q p ≥ 0. We seek closures that

ensure that each of these terms is nonnegative.

7.3 Intraspecies collisional closure. We
need that T−1 ·R ≥ 0. We therefore suppose that
R is a linear function of T. In order to invoke rota-
tional symmetries, we will assume that this closure
is independent of interaction with other species.

7.3.1 Isotropic case. In the absence of a strong
magnetic field we can assume that the relation is
isotropic. Then

R = µT + λ I tr T,

which we can rewrite as

R =
p̃ I− P
τ

,

which evidently effects relaxation toward an
isotropic pressure p̃ with time period τ .

Assuming that intraspecies collisions conserve
translational energy (i.e. involve no exchange of en-
ergy with non-translational modes), tr R = 0, i.e.,
p̃ = p. In case energy is exchanged with non-
translational modes, to respect entropy p̃ is con-
strained by the requirement that heat must not flow
from cold to hot.

Henceforth assume conservation of translational
thermal energy:

p̃ = p.

The rate of entropy production due to isotropiza-
tion (which must be positive) is

R :T−1 = τ−1n(T I− T) : T−1

= τ−1n(trT trT−1/3− 3),

I claim that this is nonnegative as long as τ is pos-
itive and is zero precisely whenT is isotropic. That
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is, I claim that tr T tr T−1/3 ≥ 3, with equality in
case T is isotropic.

To verify this claim, use a principal normal
decomposition of Tij with eigenvalues T1, T2, T3.
We employ the Cauchy inequality to obtain

tr T tr T−1/9 = T1+T2+T3
3

T−1
1 +T−1

2 +T−1
3

3 =
‖a‖2‖b‖2 ≥ (a ·b)2 = 1, where we define
the tuples a :=

(√
T1,
√
T2,
√
T3
)
/
√

3 and

b :=

(√
T−11 ,

√
T−12 ,

√
T−13

)
/
√

3. (Alternatively

use that the arithmetic mean exceeds the geometric
mean, i.e., use convexity of the logarithm.)

7.3.2 Gyrotropic case. In the presence of a mag-
netic field strong enough to substantially distort the
particle velocity distribution we would merely re-
quire a gyrotropic linear relationship, involving as
many as 12 independent parameters to be deter-
mined by experiment or collision integral.

7.3.3 Relation of viscosity in the 5-moment clo-
sure to the time scale of relaxation to isotropy in the
10-moment closure. Just as we showed that the
10-moment closure for the heat flux tensor is con-
sistent with the 5-moment closure for the heat flux,
we now show how the 10-moment closure for colli-
sional isotropization corresponds to the 5-moment
closure for viscous stress.

To demonstrate correspondence we attempt to
match up the stress tensor closure with the pressure
evolution equation. We will need to suppose rapid
relaxation toward isotropy, which, as we will see,
means small viscosity. Observe that P = p I − τR,
so τR = σ. Pressure tensor evolution says

R = (δ̄tp)I + 2p Sym(∇u) +O(τ).

Stress closure says

σ

µ
= 2 Sym(∇u) +

λ

µ
∇ ·u I.

Rewriting pressure tensor evolution,

σ

pτ
= 2 Sym(∇u) + dt lnT I +O(τ).

Evidently we need

µ = pτ

and dt lnT = λ
µ∇ ·u+O(τ), i.e. dt lnT + λ

µdt lnn =
O(τ), which holds (by conservation of entropy to

leading order) if λ/µ = −2/3, i.e., if the Stokes as-
sumption that the viscous stress tensor is traceless
holds. We conclude that viscosity is equivalent to
isotropization on time scales much longer than the
isotropization period.

Remark : Comparing the 10-moment isotropic in-
traspecies collisional closure for thermal energy
with the 5-moment isotropic viscous stress closure,
it is evident that the Stokes assumption is equiva-
lent to the assumption that instraspecies collisions
exchange no energy with non-translational modes.

Comparison of entropy production in 5-moment
and 10-moment pressure closures. Recall that in
the 5-moment model the rate of entropy produc-
tion due to viscosity is T−1σ : Sym(∇u). In the 10-
moment model the rate of entropy production due
to isotropization is T−1 :R. How do I show that
these rates agree?

7.4 Interspecies collisional closure. We
seek an isotropic 10-moment collisional closure half
of whose trace agrees with the isotropic 5-moment
closure. Such a 10-moment closure is

wp := up − u,
←→
R p = η̃pρρpwp,
←→
Q f =

∑
p

←→
Q f

p,

←→
Q f

p =
2mp

mp+m

←→
R p ·

(
(α‖p−α⊥p ) Iwp + α⊥p wp I

)
,

←→
Q t =

∑
p

←→
Q t

p,

←→
Q t

p =
2

3
ρK̃pρp

(
αtp(Tp−T) + αtp I (Tp−T)

)
,

where

αtp + αtp = 1,

α‖p + 2α⊥p = 1,

and where we have assumed the decomposition
←→
Q p =

←→
Q f

p +
←→
Q t

p

of generalized interspecies collisional heating into a

frictional drag component
←→
Q f

p and a thermal ex-

change component
←→
Q t

p and we have required that

tr
←→
Q f

p = 2Qfp and tr
←→
Q t

p = 2Qtp.

We now impose the requirement that entropy in-
crease.
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7.4.1 Frictional heating closure. Friction should
increase the entropy for each species:

T−1 :
←→
Q f

p ≥ 0.

For this, making the definition ŵ := wp/‖wp‖, we
need

T−1 :
(

(α‖p−α⊥p )ŵŵ + α⊥p I
)
≥ 0,

i.e.,

T−1 :
(
α‖pŵŵ + α⊥p (I− ŵŵ)

)
≥ 0,

which, using that T is positive definite and that

α
‖
p + 2α⊥p = 1, holds if (and, assuming that α

‖
p and

α⊥p are independent of ŵ, only if)

0 ≤ 2α⊥p ≤ 1.

That is, the portions of resistive heating in the
directions parallel and perpendicular to the inter-
species drift velocity must both be positive.

[This argument must be invalid, because it implies
that friction should be independent of temperature.
I need to compute a proper Fokker-Plank collision
integral.] I contend that resistive heating should
be allocated almost entirely in the directions per-
pendicular to the interspecies drift velocity. A ba-
sis for the assumption that we can decompose in-
terspecies collisional heating into resistive heating
and thermal equilibration is that we can perform a
time-splitting where we move each species with its
bulk velocity (allowing collisions to happen) and
then move particles with their thermal speeds (al-
lowing collisions to happen). In the stage where we
move each species with its bulk velocity we have
cold plasma and the ratio of the allocation of heat-
ing in the perpendicular direction to the allocation
of heating in the parallel direction should be on the
order of twice the Coulomb logarithm (typically be-
tween 10 and 20 for laboratory plasmas).

Therefore, I am inclined to choose a value of 2α⊥p
close to 1, which says that most of the resistive heat-
ing goes into the perpendicular modes and almost
none into the parallel modes. (Miura and Groth,
however, choose 2α⊥p = 1/3, so that one third of the
resistive heating goes into the perpendicular direc-
tions and two thirds goes into the parallel direc-
tion.)

I remark that estimating frictional effects by re-
garding the thermal velocity as dominated by in-
terspecies drift relies heavily on the validity of the
time-splitting argument. Even if interspecies drift
velocity initially dominates thermal velocities, this
will quickly become false because resistive slowing
will convert most of the kinetic energy of inter-
species drift into thermal energy before half the
slowing has occurred.

7.4.2 Thermal heat exchange closure. For ther-
mal heat exchange we need the total entropy of the
two species to be nondecreasing,

0 ≤ T−1i :
←→
Q t

ie + T−1e :
←→
Q t

ei.

If we assume that αtp and αtp are fixed constants
independent of species, then for this we need that

0 ≤
(
T−1i − T−1e

)
:
[
αtp(Te−Ti) + αtp I (Te−Ti)

]
.

Considering a case where Te and Ti share common
eigenvectors shows that we need αtp = 1 to respect
positivity. Otherwise heat transfer from a highly
anisotropic species can not only violate entropy but
even result in a non-positive-definite pressure ten-
sor. (Miura and Groth, however, set αtp = 0 and
αtp = 1.) A more complex entropy-respecting clo-
sure would result if we drop the dubious assump-
tion that αtp and αtp are fixed constants and assume
instead that collisions constantly exchange heat in
both directions and that heat exchange transfers
heat away from a temperature eigenvector of a
species at a rate that increases with its energy and
into a species at a rate that is equal among all di-
rections.

So we need the inequality

0 ≤
(
T−1i − T−1e

)
: (Te − Ti) .

One can easily verify that this holds in case the
temperature tensors (1) share common eigenvectors
or (2) are nearly isotropic. Therefore, entropy is
respected in the near-Maxwellian limit. Does this
inequality holds in general in case the eigenvectors
are not aligned?

8 Scaling of closure parameters

[I have only begun to write this section. I really need
to work out the Fokker-Plank collision integrals.]
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Résumé of the 10-moment closure.

To recapitulate, an entropy-respecting isotropic lin-
earized 10-moment multi-fluid closure is

ρt +∇ · (ρu) = 0,

∂t(ρu) +∇ ·E =
q

m
ρ(E + u ×B) + R,

∂tE +∇ · (uE) + 2 Sym∇ · (Pu) +∇ ·q

=
q

m
2 Sym(ρuE + E ×B)

+ 2 Sym(uR) + R +
←→
Q f +

←→
Q t,

where

P := E − ρuu, T := P/n, n := ρ/m,

p := tr P/3,
wp := up − u,
←→
R p = η̃pρρpwp,

R =
∑
p

←→
R p

q = a03 I Y tr
(
3∇ Y T−1

)
+ a13∇ Y T−1,

R =
p I− P
τ

,

←→
Q f =

∑
p

2mp

mp+m

←→
R p ·

(
(α‖p−α⊥p ) Iwp + α⊥p wp I

)
,

←→
Q t =

2

3
ρ
∑
p

K̃pρp (Tp−T) ,

where

α‖p + 2α⊥p = 1;

again, p denotes other species and I have altered
the coefficients to suggest typical dependency on
the state. To respect entropy we require that

τ ≥ 0, (isotropization period)

η̃p ≥ 0, (drag coefficient)

a0, a1 ≥ 0, (heat flux coefficients)

K̃p ≥ 0, (heat transfer coefficient)

1 ≥ 2α⊥p ≥ 0. (frictional heating allocation)

These coefficients are related to the coefficients of
the 5-moment closure by

µ = pτ, (viscosity)

κ =
25a0 + 5a1

2T 2
. (heat conductivity)

The basic parameter in terms of which we seek to
express all other parameters is the collision period,
the expected time between collisions for a given
species in a given physical location. Since charged
particles are constantly interacting with one an-
other, one usually defines a charged particle to have
experienced a collision when it has accumulated a
net deflection of some threshold angle, say 35 de-
grees.

The self-collision period is the expected time re-
quired to accumulate the net threshold deflec-
tion when only deflections due to self-collision are
counted. The electron-ion collision period is the ex-
pected time required to accumulate the net thresh-
old deflection when only interspecies collisions are
counted. A collision frequency is defined to be the
reciprocal of its associated collision period.

Recall that the temperature is (defined to be) twice
the average energy per degree of freedom. The av-
erage translational kinetic energy of a particle mea-
sured in the reference frame of the fluid is thus three
halves the temperature.

We define a thermal particle to be a particle
whose kinetic energy in the reference frame of the
fluid is average, i.e., whose thermal velocity is

v0 :=

√
T

m
.

So in thermal equilibrium typical particle velocity is
inversely proportional to the square root of particle
mass.

A convenient tool to estimate collision time is the
collisional cross-section, which is the cross-sectional
area of the sphere around a particle which repre-
sents the distance at which the Coulomb potential
energy of a test particle equals the kinetic energy
of a thermal particle.

The isotropization period of each species should be
on the order of its collision period; it is convenient
to define the collision period of each species to be
its isotropization period.

The collision frequency should be proportional to
the density of particles. It will depend on temper-
ature.
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Diffusive terms cause spatial oscillations to decay
with a period that increases with wavelength. For
a diffusive term the scale of the diffusion coefficient
is determined by the requirement that the mean
free path of a thermal particle matches the spatial
scale of oscillations that decay over the time scale
of a collision period.

For the heat flux, thermal evolution of a stationary
constant-density fluid is

3/2∂tT = κ̃m∇ ·∇T.

Nondimensionalizing time with typical time scale
t0 and space with typical spatial scale x0 = v0t0,

where v0 ∼
√

T
m is the thermal velocity, yields κ̃ ∼

v20t0/m = pt0
ρm ; that is,

κ ∼ pt0
m
,

where κ := κ̃ρ is the heat conductivity.

9 Entropy of two-fluid plasma.

The entropy (per volume) of a multi-fluid plasma
should be the sum of the entropies of its subsystems.
In particular, the entropy of a two-fluid plasma
should be the sum of the entropies of the ions, the
electrons, and the electromagnetic field.

To define the entropy of the electromagnetic field
we maintain the requirements that entropy should
be conserved, there should be a positive-definite en-
ergy exchange between species, and the electromag-
netic field should not change the entropy (because
total entropy of a system can only be changed by
the flow of heat).

10 Appendix

10.1 Isotropic closures. For the isotropic
closures in this document we need the general form
of a linear isotropic relationship between two sym-
metric tensorsA andB of the same rankN . The co-
efficients of this linear relationship comprise a ten-
sor of order 2N .

We will use that an isotropic tensor is (up to permu-
tation of indices) a linear combination of basis ele-
ments each of which is the tensor product of copies

of the identity tensors and at most one copy of the
permutation tensor. In spaces with an odd number
of dimensions (namely 3) the permutation tensor
has odd order, so every even-order isotropic tensor
must be a linear combination of tensor products of
copies of the identity tensor (see [Jeffreys72]).

The tensor of coefficients relating two order-N sym-
metric tensors must be symmetric in its first N and
in its last N indices. Each basis element is obtained
by summing (or averaging) one of the isotropic ba-
sis elements over permutations of the first indices
and permutations of the last indices.

Specifically, for odd-dimensional spaces a symmet-
ric order-N tensor A which is an isotropic linear
function of a symmetric order-N tensor B is the
symmetric part of a linear combination of powers
of the trace operator applied to B times correspond-
ing tensor powers of the identity tensor:

A = Sym(µ0B + µ1 I trB + µ2 I⊗ I tr trB

+ · · ·+ µkI⊗k trk B + · · · ),

a linear combination of the integer floor of (N+1)/2
many basis elements.

10.1.1 Rank 1. The general isotropic linear re-
lation between two rank-1 tensors is simply a scalar
multiple:

A = (λI) ·B = λB

10.1.2 Rank 2. The general (rank-2 symmetric
tensor)-valued isotropic linear function A of a sym-
metric rank-2 tensor B is a linear combination of B
and its trace times the identity matrix:

A = µB + λI trB

10.1.3 Rank 3. The general (rank-3 symmetric
tensor)-valued isotropic linear function of a sym-
metric rank-3 tensor B is the symmetric part of
a linear combination of B and its trace times the
identity matrix:

A = µB + λ Sym(I tr B)
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