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1 Introduction.
All the thermodynamics that I have needed as an applied
math fluids person follows from the basic postulates of ther-
modynamics, the two postulates of an ideal gas, and two re-
sults of statistical mechanics. This paper attempts to derive
and summarize all the thermodynamics that I have needed
on a single sheet.

2 Definition of quantities.
T := temperature
p := pressure

Quantities per mass (mass-specific quantities).
v := volume per mass (= 1/ρ)
e := energy per mass
h := enthalpy per mass
s := entropy per mass

Quantities per volume (volume-specific quantities).
ρ := mass per volume (= 1/v)
n := number of molecules per volume

Total quantities of a system in equilibrium.
M := mass of system (= Nm)
V := total volume of the system
U := total heat energy of the system
Q := heat energy absorbed by the system in a process
L := work performed by the system in a process
S := entropy of the system
N := number of particles in the system

Thermodynamic parameters.
k := Boltzmann universal gas constant

= 1.3806505× 10−23 joule/kelvin
= 8.617343× 10−5 electron-volt/kelvin.

m := mass of each molecule
R := k/m = specific gas constant
α := number of degrees of freedom of a molecule
cv := mass-specific heat capacity at constant volume
cp := mass-specific heat capacity at constant pressure
γ := cp/cv = ratio of heat capacities

3 Laws of thermodynamics.
In applying these laws of equilibrium thermodynamics to
gases that are not in equilibrium, we assume that the gas
can be partitioned into small convected volume elements
each of which contains a large number of particles that are
approximately in equilibrium. It is helpful to think of “the
system” as some such convected volume element in the fol-
lowing development.

Assume the following assumptions of thermodynamics.

1. (First Law) The first law of thermodynamics is the
conservation of energy. It states that the change in
heat energy of a system equals the work performed
on the system plus the heat energy absorbed by the
system:

∆U + L = Q.

Expressing this in differential form:
dU + pdV = dQ

To express this in mass-specific quantities, take the sys-
tem to be a small convected fluid volume and let
e := U

M , v := V
M , dq := dQ

M .

Then we can write:
de+ pdv = dq

2. (Second Law) It is impossible for the net effect of any
process to be purely the transfer of heat from a colder
to a warmer body.

3. (Existence of reversible heat engines) Perfectly re-
versible heat engines exist. (That is, it is possible to
approximate a perfectly reversible heat engine arbitrar-
ily well.) A heat engine is a system which in one cycle
begins and ends in the same state and in the cycle ab-
sorbs heat from a hotter system, surrenders some of
this heat to a cooler system, and surrenders the rest of
the heat energy it absorbed by doing work. When a
heat engine is run in reverse the flows are reversed: it
performs negative work (i.e. receives work), it absorbs
heat from (i.e. surrenders negative heat to) the colder
body, and it surrenders heat to the hotter body. When
a (perfectly) reversible heat engine is run in reverse
the quantities of heat and work exchanged are simply
negated.

These assumptions lead to:

• The notion of an absolute temperature scale, unique up
to rescaling. (The ratio of two temperatures is defined
to be the ratio of the magnitudes of heat absorbed and
surrendered by a perfectly reversible heat engine run-
ning between systems at these temperatures; this ratio
must be the same for any two reversible heat engines,
since otherwise the more efficient engine could be used
to run the other engine in reverse with the only final
result being that heat is transfered from the cold body
to the warmer body.)

• The notion of entropy. Entropy is additive; that is, the
total entropy of a system is the sum of the entropies of
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its subsystems. The total entropy of a closed system
remains constant for a reversible process and increases
for an irreversible process. The entropy of a system in
equilibrium only changes when it absorbs or surrenders
heat energy. So entropy is an invariant of an adiabatic
(non-heat-conducting) process. Seeking a definition of
entropy that satisfies these requirements, we define the
change in entropy to be dS = dQ

T . This ensures that
running a reversible heat engine does not increase the
entropy and that a less efficient heat engine does. For

a small convected fluid volume we get ds = dq
T .

4 Ideal gas law.

Three state variables (e.g. mass density, (energy density
or temperature), and pressure) are sufficient to specify the
state of the gas in the vicinity of a point.
We take the following as axioms of an ideal gas.

1. The product of pressure and volume is a simple (pro-
portionality) function of temperature independent of
density: pv = RT .

2. Thermal energy is a simple (proportionality) function
of temperature independent of density: U(T ) ⇐⇒
e(T ). For our purposes it will be enough to assume that
de = cvdT over the relevant range of state variables.
By redefining the zero of e if necessary, we can say that
e = cvT .

5 Enthalpy.

Adding the two assumptions of an ideal gas leads to the
notion of the enthalpy h: (e+ pv)︸ ︷︷ ︸

Call h

= (R+ cv)︸ ︷︷ ︸
Call cp

T .

6 Entropy of an ideal gas.

If we invoke the ideal gas law we can eliminate a state vari-
able from the differential of entropy, giving us a formula for
entropy in terms of two state variables.

Define γ := cp
cv

. So γ − 1 = R
cv

. And γ−1
γ = R

cp
.

Statement/Expression Reason
dq = de+ pdv First law
ds = dq

T Definition of entropy
= de

dT
dT
T + p

T dv e(T )
= cv

dT
T +R dv

v e = cvT , pv = RT
= cv(d lnT + R

cv
d ln v)

= cvd(lnT + (γ − 1) ln v)
= cvd ln(Tvγ−1)
= cvd ln(Tρ1−γ) v = ρ−1

= cvd ln(pρ−γ) T = pρ−1R−1

= cvd ln(T γp1−γ) ρ = pT−1R−1

= cpd ln(Tp
1−γ
γ )

So we can write, e.g., s = cv ln(pρ−γ) + (const)

7 Relation between state variables
of an ideal gas.

Since dT = d(pv)
R and de = cvdT , de = cv

R d(pv), i.e., defin-

ing the zero of e conveniently, ρe = 1
γ−1p

8 Results of statistical mechanics.
Statistical mechanics determines formulas for the param-
eters of an ideal gas based on the number of degrees of
freedom α of each molecule and the mass per molecule m.
These formulas are based on two basic results:

8.1 Equipartition theorem.
energy

degree of freedom = 1
2kT , i.e. energy

molecule = α
2 kT

This says that the energy on average is equally distributed
among all degrees of freedom of the system:

8.2 Pressure versus energy density.

p = 2n energy
degree of freedom = nkT ,

i.e. pressure equals twice the density of translational
kinetic energy in the direction perpendicular to some
surface element. (An elementary calculation of the rate of
momentum transfer across a surface element establishes
this relationship between pressure and kinetic energy.)

We infer the specific gas constant in p = ρRT to be
R = k/m . To determine the ratio of heat capacities, we

use that( energy
volume

)
=
( energy
deg. of freedom

)(degs. of freedom
molecule

)(molecules
volume

)
,

i.e. ρe = ( 1
2kT )αn = α

2 p. Hence e
pv = ρe

p = α
2 , i.e.

1
γ−1 = α

2 . To summarize:

ratio α = 3 α = 5(
cv
R

)
= 1

γ−1
= α

2
3
2

= 1.5 5
2

= 2.5(
R
cv

)
= γ − 1 = 2

α
2
3

= 0.6 2
5

= 0.4(
cp
cv

)
= γ = 2+α

α
5
3

= 1.6 7
5

= 1.4(
R
cp

)
= γ−1

γ
= 2

2+α
2
5

= 0.4 2
7

= 0.285714
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