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Abstract

We propose a Gaussian-BGK relaxation closure for the heat flux (and
viscosity) for Gaussian-moment two-fluid MHD. We argue that this is the
simplest fluid model that can be expected to resolve the pressure tensor near
the X-point for fast antiparallel magnetic reconnection: two-fluid effects are
needed for collisionless fast reconnection, extended moments are needed to
resolve the strong agyrotropy that arises in the pressure tensor near the
X-point, and nonzero viscosity and heat flux are necessary to admit
sustained reconnection without developing a temperature singularity near the
X-point.

Background: two-fluid models

The starting point for deriving two-species plasma models is the
kinetic-Maxwell system, which evolves the particle densities fs(t ,x,v) and the
electromagnetic field (B,E). The standard model of gas dynamics is the
Maxwellian-moment (5-moment) model, which evolves the 5 physically
conserved moments of the kinetic equation. The Gaussian-moment
(10-moment) model instead evolves all 10 quadratic monomial moments.

Kinetic-Maxwell system
I Kinetic equations:

∂tfi + v ·∇xfi + ai ·∇vfi = Ci + Cie

∂tfe + v ·∇xfe + ae ·∇vfe = Ce + Cei

I Lorentz force law
ai =

qi
mi

(E + v × B)

ae =
qe
me

(E + v × B)

I Maxwell’s equations:
∂tB +∇× E = 0

∂tE − c2∇× B = J/ε0

∇ · B = 0, ∇ · E = σ/ε0

σ =
∑

s

qs

ms

∫
fs dv

J =
∑

s

qs

ms

∫
vfs dv

Gaussian(10)-moment model:
I moments: ρs

ρsus

Ps

 =

∫  1
v

cc

 fs dv

cs := v − us

I closure:
Rs =

∫
cscs Cs dv[

Rs

Qs

]
=

∫ [
v

cscs

]
Csp dv

qs =

∫
cscscs fs dcs

Maxwell(5)-moment model:
ps =

1
3 trPs, Qs =

1
2 trQs, qs =

1
2 tr qs.

MHD models assume quasineutrality (σ ≈ 0) and neglect the displacement
current ∂tE and can be derived assuming the limit c → ∞. MHD models thus
evolve a single density evolution equation and a single momentum evolution
equation. Two-fluid MHD evolves separate energy equations for each species

Part A (Model Requirements)

Define a symmetric 2D problem to be a 2D problem symmetric under
180-degree rotation about the origin (0). In our simulations of symmetric 2D
reconnection the origin is an X-point of the magnetic field:

This first half of the poster identifies requirements for fast magnetic
reconnection by analyzing the solution near the X-point. We argue that, for
accurate resolution of the electron pressure tensor near the X-point, a fluid
model of fast reconnection (1) must resolve two-fluid effects, (2) should
resolve strong pressure anisotropy, and (3) must admit viscosity and heat
flow.

All equations in part A assume a steady-state solution to a symmetric
2D problem and are evaluated at the origin (0).

1. Ohm’s law: fast reconnection needs two-fluid effects.

Ohm’s law is net electrical current evolution solved for the electric field. Assuming
symmetry across the X-point, the steady-state Ohm’s law evaluated at the X-point reads

E‖ = (η ·J)‖ + 1
eρ [∇ · (mePi − miPe)]

‖ at 0 for ∂t = 0.
Fast reconnection is nearly collisionless, so the resistive term η ·J should be negligible.

For pair plasma, the pressure term is zero unless the pressure tensors of the two species
are allowed to differ. In fact, kinetic simulations of collisionless antiparallel reconnection
admit fast rates of reconnection [BeBh07], and we get similar rates using a two-fluid
Gaussian-moment model of pair plasma with pressure isotropization [Jo11].

For hydrogen plasma, the electron pressure term chiefly supports reconnection, and the
Hall term mi−me

eρ J × B, although zero at the X-point, appears to accelerate the rate of
reconnection [ShDrRoDe01].

2. Pressure anisotropy at X-point needs an extended-moment model.

For antiparallel reconnection, the pressure tensor becomes strongly agyrotropic in the
immediate vicinity of the X-point [Br11, ScGr06]. Stress closures for the
Maxwellian-moment model assume that the pressure tensor is nearly isotropic. In
contrast, the assumptions of the Gaussian-moment model (that the distribution of particle
velocities is nearly Gaussian) can hold even for strongly anisotropic pressure. In practice,
we have found good agreement of the Gaussian-moment two-fluid model with kinetic
simulations [Jo11, JoRo10]:
I Reconnection rates are approximately correct.
I Reconnection is primarily supported by pressure agyrotropy.
I There is qualitatively good resolution of the electron pressure tensor near the X-point

even when the pressure becomes strongly agyrotropic.

3. Theory: steady collisionless reconnection requires viscosity & heat flux

For a symmetric 2D problem, the origin is a stagnation point. Informally, we show that
steady reconnection is not possible without heat production near the stagnation point and
that a mechanism for heat flow is therefore necessary to prevent a heating singularity at
the stagnation point. Formally, define a solution to be nonsingular if density and pressure
are finite, strictly positive, and smooth; we show that a steady-state solution to a
symmetric 2D problem must be singular if viscosity or heat flux is absent.

3a. Steady collisionless reconnection requires viscosity.

By Faraday’s law the rate of reconnection is E‖(0) (the out-of-plane electric field evaluated
at the origin). Momentum evolution implies

E‖(0) =
−R‖

s

σs
+
(∇ ·Ps)

‖

σs
at 0 for ∂t = 0, (1)

where σs is charge density. For collisionless reconnection the drag force Rs should be
negligible. If the pressure is isotropric or gyrotropic in a neighborhood of 0, then ∇ ·Ps is
zero. That is, inviscid models do not admit steady reconnection [HeKuBi04].

3b. Theorem: Steady collisionless reconnection requires heat flux.

Viscous models generate heat near the X-point. Symmetry implies that the X-point is a
stagnation point. An adiabatic fluid model provides no mechanism for heat to dissipate
away from the X-point. As a result, viscous adiabatic models develop a temperature
singularity near the X-point when used to simulate sustained reconnection. Numerically,
when we simulated the GEM magnetic reconnection challenge problem using an adiabatic
Gaussian-moment model with pressure isotropization (viscosity), shortly after the peak
reconnection rate temperature singularities developed near the X-point. Theoretically, we
have the following steady-state result:

Theorem [Jo11]. For a 2D problem invariant under 180-degree rotation about 0 (the
origin), steady-state nonsingular magnetic reconnection is impossible without heat flux for
a Maxwellian-moment or Gaussian-moment model that uses linear (gyrotropic) closure
relations that satisfy a positive-definiteness condition and respect entropy (in the
Maxwellian limit).

Proof (Maxwellian case)

Let ′ denote a partial derivative (∂x or ∂y) evaluated at 0. Conservation of mass
and pressure evolution imply the entropy evolution equation:

psus ·∇s = 2e◦
s :µs :e◦

s −∇ ·qs + Qs, (2)
where e◦

s is deviatoric strain, −P◦
s = 2µs :e◦

s is deviatoric stress, and µs is the
viscosity tensor. Assume that qs = 0 near 0. Evaluating equation (2) at 0 and
invoking symmetries yields e◦

s :µs :e◦
s = −Qs. Assume that µ is

positive-definite. Assume that thermal heat exchange conserves energy:
Qi + Qe = 0. So Qs must be zero, so e◦

s = 0 at 0. Evaluating the second
derivative of equation (2) at 0 and invoking symmetries yields
(e◦

s)
′ :µ : (e◦

s)
′ = −Q′′

s , which by conservation of energy (Q′′
i + Q′′

e = 0) must be
nonpositive for one of the two species (which we take to be s) for differentiation
along two orthogonal directions. Using that µ is positive-definite, (e◦

s)
′ = 0.

Therefore, −(P◦
s)

′ = 2(µs :e◦
s)

′ = 0. Since this relation holds for two orthogonal
directions, ∇Ps = 0 at 0, so ∇ ·Ps = 0 at 0. So equation (1) says that
E‖(0) = 0, i.e., there is no reconnection.

A similar proof can be given for the Gaussian case by differentiating the
Gaussian-moment entropy evolution equation.

Part B (Model)

In this second half we present, as the simplest model satisfying these
requirements, a Gaussian-BGK closure of Gaussian-moment two-fluid MHD.
A Gaussian-BGK collision operator relaxes the particle velocity distribution
toward a Gaussian distribution. We assume a Gaussian-BGK collision
operator and use a Chapman-Enskog expansion to derive a closure for
Maxwellian-moment and Gaussian-moment MHD.

Equations of (Maxwellian-moment) two-fluid MHD

Magnetic field:
∂tB +∇× E = 0, ∇ ·B = 0

Ohm’s law:
E = η ·J + B × u + mi−me

eρ J × B
+ 1

eρ∇ · (mePi − miPe)

+ mime
e2ρ

[
∂tJ +∇ ·

(
uJ + Ju − mi−me

eρ JJ
)]

Mass and momentum:
∂tρ +∇ · (uρ) = 0
ρdtu +∇ · (Pi + Pe + Pd) = J × B

Pressure evolution:
3
2ndtTi + pi∇ ·ui + P◦

i :∇ui +∇ ·qi = Qi
3
2ndtTe + pe∇ ·ue + P◦

e :∇ue +∇ ·qe = Qe

Closures:
P◦

s = −2µs :e◦
s

qs = −ks ·∇Ts

(Qs = Qf
s + Qt

s)

Definitions:
dt = ∂t + us ·∇
J = µ−1

0 ∇× B
e◦

s = (∇us)
◦

ρ = (mi + me)n
ps = nTs

Ps = psI + P◦
s

Pd = ρiwiwi + ρewewe

wi =
meJ
eρ

, we = −miJ
eρ

Equations of Gaussian-moment two-fluid MHD

The Gaussian-moment model evolves full pressure tensors rather than scalar
pressure; the equations are identical to those of Maxwellian-moment two-fluid
MHD except for the following.

Pressure tensor evolution
ndtTi + Sym2(Pi ·∇ui) +∇ ·qi =

qi
mi

Sym2(Pi × B) + Ri +Qi

ndtTe + Sym2(Pe ·∇ue) +∇ ·qe =
qe
me

Sym2(Pe × B) + Re +Qe

Closures:
Rs = −P◦

s/τs

qs = −2
5Ks

··· Sym3 (π ·∇Ts)

(Qs = Qf
s +Qt

s)

Definitions:

π =
P
p
=

T
T

Sym2 = X 7→ X + X T

Sym3 =

{
thrice symmetric part
of third-order tensor

}

Implicit intraspecies closure (viscosity and heat flux)

Assuming a Gaussian-BGK intraspecies collision operator and performing a
Chapman-Enskog expansion about an assumed distribution yields closures
for deviatoric pressure and heat flux.

For the Maxwell-moment model we expand about a Maxwellian distribution
and obtain implicit closures for heat flux and deviatoric pressure [Woods04]:

q + $̃b × q = −k∇T , (3)
P◦ + Sym2($b × P◦) = −µ2e◦, (4)

where µ is viscosity, k is heat conductivity, $ := τωc is the gyrofrequency per
momentum diffusion rate, $̃ := $/Pr is the gyrofrequency per thermal
diffusion rate, and Pr is the Prandtl number; the gyrofrequency is
ωc := q|B|/m, and b := B/|B|.

For the Gaussian-moment model we expand about a Gaussian distribution
and obtain the relaxation closure Rs = −P◦

s/τs and an implicit closure relation
for the heat flux tensor [Jo11, McGr08]:

q + Sym3($̃b × q) = −2
5k Sym3 (π ·∇T). (5)

Explicit intraspecies closure (viscosity and heat flux)

In this frame the species index s is
suppressed. All products of tensors are
splice symmetric products satisfying
2(AB)j1j2k1k2 := Aj1k1Bj2k2 + Bj1k1Aj2k2 and

3!(ABC)j1j2j3k1k2k3

:=Aj1k1Bj2k2Cj3k3+ Aj1k1Cj2k2Bj3k3

+Bj1k1Aj2k2Cj3k3+ Bj1k1Cj2k2Aj3k3

+Cj1k1Aj2k2Bj3k3+ Cj1k1Bj2k2Aj3k3

(so permute the letters and leave the indices
unchanged).

Definitions:

δ‖ := bb,
δ⊥ := I− bb,
δ∧ := b × I.

Solving equations (3–4) for q and P◦ gives

q = −k k̃ ·∇T ,

P◦ = −2µµ̃ :e◦,

where [Woods04]

k̃ =δ‖ +
1

1+$̃2(δ⊥ − $̃δ∧),

µ̃ =1
2(3δ

2
‖ + δ2

⊥) +
2

1+$2(δ⊥δ‖ −$δ∧δ‖)

+ 1
1+4$2(

1
2(δ

2
⊥ − δ2

∧)− 2$δ∧δ⊥).

Solving equation (5) for q gives [Jo11]

q =− 2
5kK̃ ··· Sym3(π ·∇T),

K̃ =
(
δ3
‖ +

3
2δ‖(δ

2
⊥ + δ2

∧)
)

+ 3
1+$̃2

(
δ⊥δ

2
‖ − $̃δ∧δ

2
‖

)
+ 3

1+4$̃2

(
1
2(δ

2
⊥ − δ2

∧)δ‖ − 2$̃δ∧δ⊥δ‖

)
+ (k0δ

3
⊥ + k1δ∧δ

2
⊥ + k2δ

2
∧δ⊥ + k3δ

3
∧),

where

k3 :=
−6$̃3

1 + 10$̃2 + 9$̃4 = −(2/3)$̃−1 +O($̃−3),

k2 :=
6$̃2 + 3$̃(1 + 3$̃2)k3

1 + 7$̃2 = O($̃−2),

k1 :=
−3$̃ + 2$̃k2

1 + 3$̃2 = −$̃−1 +O($̃−3),

k0 := 1 + $̃k1 = O($̃−2).

For computational efficiency one can
instead use splice products,

(AB)′j1j2k1k2
:= Aj1k1Bj2k2,

(ABC)′j1j2j3k1k2k3
:= Aj1k1Bj2k2Cj3k3,

and symmetrize at the end, e.g.

qs = −2
5ks Sym

(
K̃′

s
··· Sym3 (π ·∇Ts)

)
.

Interspecies closure (friction and thermal equilibration)

For collisionless reconnection the interspecies collisional terms should not be necessary for
fast reconnection and should be small in comparison to the intraspecies collisional terms.
Nevertheless, for completeness we give a linear relaxation closure.

For thermal equilibration one can relax
toward the average temperature

Qt
s =

3
2K n2(T0 − Ts),

where 2T0 := Ti + Te, or toward an average
temperature tensor

Qt
s = K n2(T0 − Ts),

where 2T0 := T̃i + T̃e and

T̃s := ν ′TsI + νTs,

where ν ′+ ν = 1, 0 ≤ ν ′ ≤ 3
2 and ν ′ might be 1

or Pr−1. Note that the equilibration rate is nK .

Frictional heating can be allocated among
species in inverse proportion to particle
mass:

Qf := Qf
i + Qf

e = η :JJ
miQf

i = meQf
e

The frictional tensor heating also must be
allocated among directions:
Qf = (α‖ − α⊥)Sym2(η ·JJ) + α⊥η :JJ I,
Qf

i =
me

me+mi
Qf,

Qf
e =

mi
me+mi

Qf.

where α‖ + 2α⊥ = 1 and 0 ≤ α‖ ≤ 1.

Relaxation coefficients

Diffusion
µs =τsnTs

2
5ks =

µs

ms Prs

Relaxation periods

τ0 :=
12π3/2

lnΛ

(ε0

e2

)2

n τ ′ss := τ0
√

ms det(Ts)

Braginskii
τBr

i := τ ′ii
τBr

e := 1√
2
τ ′ee

τi = .96τ ′ii
τe = .52τ ′ee

Pri = .61 ≈ 2
3

Pre = .58 ≈ 2
3

Note that we define the relaxation periods in
terms of

√
det(Ts) rather than T 3/2 in order to

prevent the closure for the heat flux tensor
from violating positivity.

Neglectable (interspecies)

K−1 := τ0
mime√

2

(
Ti
mi
+ Te

me

)3/2

2τ ε,Br
ei = (K n)−1 ≈ τBr

e
mi

me

η0 :=
me

e2nτBr
e
, η‖ := .51η0, lim

$→∞
η⊥ = η0

Braginskii’s closures are based on Coulomb
collisions. In collisionless systems, relaxation
is not really mediated by Coulomb collisions,
and interspecies relaxation terms should be
smaller than this.
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