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Abstract

Question: What are the minimal modeling conditions that admit fast
magnetic reconnection?

Claim: Fast magnetic reconnection occurs in an isotropic model of pair
plasma. 1

Therefore the inertial term of Ohm’s law is sufficient to provide for fast
reconnection without the aid of the Hall term or pressure anisotropy.

1We use a collisionless two-fluid model, which is not consistent with the assumption of isotropic pressure.
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Background

Plasma: gas of charged particles.

Since charged particles spiral around magnetic field lines, magnetic field lines
are approximately frozen into the plasma.

The topology of magnetic field lines can change only if magnetic field is able to
“reconnect”, i.e. to cancel or diffuse.

Importance:

¬ Change of topology allows plasma to flow to new places.

­ Cancellation of magnetic field releases lots of energy.
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Evolution of magnetic field

The evolution of magnetic field is governed by two equations:

¬ Faraday’s law: ∂tB +∇× E = 0

­ Ohm’s law (current balance solved for E):

E = η · J (resistive term)

+ B× u (ideal term)

+
m̃i − m̃e

ρ
J× B (Hall term)

+
1

ρ
∇ · (m̃ePi − m̃iPe) (pressure term)

+
m̃im̃e

ρ

(
∂tJ +∇ ·

(
uJ + Ju +

m̃e − m̃i

ρ
JJ
))

(inertial term).

(Here m̃i := mi/e, m̃e = me/e.)
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Theory

What modeling conditions do not admit magnetic reconnection?

¬ Existence of a flux-transporting flow: If there exists a velocity field v for which

∂tB + ∇ × (B × v) = 0, then magnetic flux is convected by v and the topology of

magnetic field lines cannot change. In particular, if we merely add the Hall term to the

ideal Ohm’s law, then ∂tB +∇× (B × (u +
m̃e−m̃i

ρ J × B)), i.e., the magnetic field is

essentially carried by the electrons.

­ Isotropic/gyrotropic pressure: For isotropic pressures the pressure term of Ohm’s law is

a gradient (i.e. has zero curl) and therefore is absent from the evolution equation for the

magnetic field. (More generally, the divergence of a gyrotropic pressure tensor is zero.)
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Previous work

What modeling conditions admit fast reconnection?

Model Reconnection? Features

Ideal MHD no reconnection

Ideal MHD + resistivity slow reconnection Sweet-Parker configuration

Ideal MHD + anomalous resistivity fast reconnection no quadrupole structure

Hall MHD no reconnection

Hall MHD + small resistivity fast reconnection X-configuration, quadrupole

Pair plasma, anisotropic pressure fast reconnection X-configuration, no quadrupole

Note that although Hall MHD theoretically does not admit reconnection, the Hall term serves

as a catalyst which in combination with even a small amount of (possibly numerical) resistivity

gives fast reconnection.
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GEM magnetic reconnection challenge

• Initial conditions: Harris sheet equilibrium, perturbed (pinched) B.

• Boundary conditions: conducting walls above and below, horizontally periodic.

• mi/me = 25, Ti/Te = 1.
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GEM magnetic reconnection challenge

(mi/me = 25, Ti/Te = 5, mx=128, my=64)
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Reconnection in the GEM context

Definition 1. The reconnected flux Frecon is defined by

Fleft(t) :=

∫ ymax

0

B1 dy, Frecon(t) := Fleft(0)− Fleft(t).

Proposition 1. The rate of reconnection is minus the value of the out-of-plane component of

the electric field at the origin (i.e. the X-point). 2

Proof:

dtFrecon(t) = −dtFleft(t) = −
∫ ymax

0

∂tB1 dy =

∫ ymax

0

∂yE3 dy = −E3(0),

since E3 is zero at the conducting wall.

2This confirms the theoretical fact that an MHD model which only includes the B×u and Hall terms in Ohm’s
law cannot give fast reconnection, since by symmetries both these terms must vanish at the origin.

14



GEM: Ohm’s law at the origin

Symmetries at the origin reduce Ohm’s law to:

E3 =ηJ3 (resistive term)

+
1

ρ
(m̃e(∂x1Pi,1,3 + ∂x2Pi,2,3)− m̃i(∂x1Pe,1,3 + ∂x2Pe,2,3)) (pressure term)

+
m̃im̃e

ρ

(
∂tJ3 + J3∇ · u + u3∇ · J +

m̃e − m̃i

ρ
J3∇ · J

)
(inertial term).

One of these terms must be nonzero at the origin for reconnection to occur.
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GEM: electric field at the origin

The momentum equation for the ions (solved for E) is:

E =
−Ri

eni
+ B× ui +

∇ · Pi
eni

+
m

e
(∂tui + ui · ∇ui),

where Ri is collisional force.

At the X-point this reduces to:

dtFrecon(t) = E3(0) =

[−Ri

eni
+
∇ · Pi
eni

+
m

e
∂tui

]
3

,

where only the out-of-plane (third) component is nonzero.

In a perfectly collisionless, gyrotropic plasma, this reduces to

dtFrecon(t) = E3 =
m

e
∂tui3,

i.e., reconnected flux should exactly track with the current at the origin.
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symmetric pair plasma

For the GEM problem, in the case of symmetry between positrons and electrons (equal

temperatures) we get complete symmetry between species.

For resistive gyrotropic symmetric pair plasma,

E = αui + (m/e)∂t(ui),

where the coefficient α specifies resistive drag force.

Plugging this into the Ampere-Maxwell law gives a harmonic oscillator (damped in case

Ri 6= 0) for ui3 forced by ∇× B.

Integrating gives:

Frecon(t) = −
∫ t

0

E3(t) = (m/e)ui(0)− ui(t)− α
∫ t

0

ui
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Original studies of GEM problem

The original GEM challenge paper 3 studied the GEM problem using PIC, Hall MHD, and

resistive MHD models and obtained fast reconnection in models which included the Hall effect.

They found that MHD with large anomalous (e.g. current-dependent) resistivity did not exhibit

the quadrupole out-of-plane magnetic field pattern that appears to characterize models which

incorporate the Hall term.
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Figure 1. The reconnected magnetic flux versus time from a variety of simulation models: full 
particle, hybrid, Hall MHD, and MHD (for resistivity r/-0.005). 

phase speed is the factor which limits the electron out- 

flow velocity from the inner dissipation region (where 
the electron frozen-in condition is broken) the electron 

outflow velocity should scale like the whistler speed 
based on the electron skin depth. This corresponds to 

the electron Alfv•n speed vAe = v/B2/4•men. With 
decreasing electron mass the outflow velocity of elec- 
trons should increase. This trend has been clearly iden- 

tified in particle simulations [Hesse et al., 1999; Hesse 
et al., this issue; Pritchett, this issue]. A series of sim- 
ulations in the hybrid model confirmed the scaling of 
the outflow velocity with vAe and that the width of the 

region of high outflow velocity scales with c/v:pe [Shay 
et al., this issue]. The flux of electrons from the inner 
dissipation region is therefore independent of the elec- 
tron mass, consistent with the general whistler scaling 

argument. 

As noted previously, excess dissipation in the Hall 
MHD models reduces the reconnection rate below the 

large values seen in particle models. On the other hand, 

large values of the resistivity are required in the simu- 
lations to prevent the collapse of the current layers to 

the grid scale. The reason is linked to the dispersion 
properties of whistler, which controls the dynamics at 

small scale. Including resistivity r/= m•i/ne 2, 

Even as k --> cx•, the dissipation term remains small 

compared with the real frequency as long as 
There is no scale at which dissipation dominates prop- 

agation. The consequence is that current layers be- 
come singular unless the resistivity becomes excessive, 
even when electron inertia is retained. The resolution 

of the problem is straightforward. Dissipation in the 

magnetic field equation proportional to V p with p _) 4 
can be adjusted to cut in sharply around the grid scale 

and not strongly diffuse the longer scale lengths which 
drive reconnection. Such dissipation models are there- 

fore preferable to resistivity in modeling magnetic re- 

connection with hybrid and Hall MHD codes. 

The key conclusion of this project is that the Hall 
effect is the critical factor which must be included to 

model collisionless magnetic reconnection. When the 

Hall physics is included the reconnection rate is fast, 
corresponding to a reconnection electric field in excess 

of 0.2Bov•/c. For typical parameters of the plasma 
sheet (n .• 0.3cm -3 and B -• 20 nT), this rate yields 
electric fields of order 4 mV/m. Several caveats must, 
however, be made before drawing the conclusion that 
a Hall MHD or Hall MHD code would be adequate to 

model the full dynamics of the magnetosphere. The 
conclusions of this study pertain explicitly to the 2-D 

system. There is mounting evidence that the narrow 
layers which develop during reconnection in the 2-D 
model are strongly unstable to a variety of modes in 

the full 3-D system. Whether the Hall MHD model 

provides an adequate description of these instabilities 
and whether these instabilities play a prominent and 

critical role in triggering reconnection and the onset of 
substorms continues to be debated. 

Acknowledgments. This work was supported in part 
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PIC studies of pair plasma

The original GEM studies prompted the question:

Is the Hall term necessary for fast reconnection?

In pair plasmas (a.k.a. electron-positron plasmas), mi/me = 1 and the Hall term is absent.

Bessho and Bhattacharjee4 used particle-in-cell (PIC) simulations to study the following

variations of the GEM problem:

problem mi/me Ti/Te fast reconnection? quadrupole Bout?

original GEM 25 5 yes quadrupole structure

(bridge) 1 5 yes no quadrupole structure

symmetric pair plasma 1 1 yes no Bout

For equal temperatures they plotted the electric field and the terms of Ohm’s law along a line

through the vertical axis for equal temperature pair plasma and verified that at the X-point all

terms vanish except the pressure term (as theoretically predicted).

4N. Bessho, A. Bhattacharjee. Collisionless reconnection in an electron-positron plasma. Physical Review
Letters, 95, 245001 (2005).
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Our question

Bessho and Bhattacharjee’s results prompted us to ask whether fast reconnection can occur in

the absence of the Hall term and pressure anisotropy. That is,

Can the inertial term alone admit fast reconnection?

We therefore studied reconnection in an isotropic model of collisionless pair plasma:

We use the isotropic ideal two-fluid model:

¬ Euler gas-dynamics for the positive species

­ Euler gas-dynamics for the negative species

® Maxwell’s equations for the electromagnetic field

There is no direct coupling between the two species.
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Five-moment collisionless two-fluid model

The collisionless two-fluid equations we solved5 were

∂t



ρi
ρiui
Ei
ρe
ρeue
Ee


+∇ ·



ρiui
ρiuiui + pi I
ui
(
Ei + pi

)
ρeue

ρeueue + pe I
ue
(
Ee + pe

)


=



0

σi(E + ui × B)

σiui · E
0

σe(E + ue × B)

σeue · E


,

∂t

[
B

E

]
+

[
∇× E+χ∇ψ

−c2∇× B+χc2∇φ

]
=

[
0

−J/ε

]
, ∂t

[
ψ

φ

]
+

[
χc2∇ · B
χ∇ · E

]
=

[
0

χσ/ε

]
.

The correction potentials ψ and φ are for numerical divergence cleaning purposes.

We used Discontinuous Galerkin, third order in space and time.

5These equations were studied extensively in
• U. Shumlak and J. Loverich. Approximate Riemann solver for the two-fluid plasma model. J. Comp. Phys.,
187:620–638, 2003, and
• A. Hakim, J. Loverich, and U. Shumlak, A high-resolution wave propagation scheme for ideal two-fluid plasma
equations. J. Comp. Phys., 219:418–442, 2006.
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GEM studies

We ran our model for Bessho and Bhattacharjee’s settings for the GEM problem. The

reconnection region was long and narrow (i.e. a high aspect ratio, as in Sweet-Parker

reconnection), triggering the tearing mode instability. This made it difficult to demonstrate

convergence.

Recent PIC simulations have studied the aspect ratio of fast reconnection. 6

We instead wished to focus on the rate of reconnection/tearing, so we halved the size of the

domain.

6M. Swisdak, Yi-Hsin Liu, J.F. Drake (2008) Development of a turbulent outflow during electron-positron
magnetic reconnection. The Astrophysical Journal, 680:999–1008.
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Results

Our simulations of isotropic pair plasma show fast reconnection and appear to be converged.

Reconnected field lines in isotropic symmetric pair plasma.
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Isotropic pair plasma, Ti/Te = 1

Reconnection in isotropic symmetric pair plasma (coarse mesh).
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Isotropic pair plasma, Ti/Te = 1

Reconnection in isotropic symmetric pair plasma (medium mesh).
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Isotropic pair plasma, Ti/Te = 1

Reconnection in isotropic symmetric pair plasma (fine mesh).
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Ten-moment studies

We have also studied the GEM problem with a ten-moment (anisotropic pressure) model. The

ten-moment equations assume that the generalized heat flux ρ〈ccc〉 is zero, i.e., that the

pressure tensor is an anisotropic Gaussian.

We find that:

¬ With no collisions reconnection is slow and saturates at a low level.

­ Relaxation toward an isotropic pressure tensor admits fast reconnection.
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Ten-moment equations

The ten-moment model replaces the gas-dynamic energy Es := ρs〈v2s〉/2 with an energy

tensor Es := ρs〈vsvs〉. (vs is particle velocity and angle brackets denote statistical average

over a small test volume). The nondimensionalized system of equations used in the collisionless

ten-moment two-fluid model is

∂t



ρi
ρe
ρiui
ρeue
Ei
Ee


+∇ ·



ρiui
ρeue
Ei
Ee

3 Sym(uiEi)− 2ρiuiuiui
3 Sym(ueEe)− 2ρeueueue


=



0

0

σiE + Ji × B

σeE + Je × B

2 Sym(JiE +
qi
mi

Ei × B)

2 Sym(JeE + qe
me

Ee × B)


,

∂t

[
cB

E

]
+ c∇×

[
E

−cB

]
=

[
0

−J/ε

]
, and ∇ ·

[
cB

E

]
=

[
0

σ/ε

]
.

Here Sym denotes the symmetric part of its argument tensor (obtained by averaging over all

permutations of subscripts).
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Anisotropic results

(Ten-moment pair plasma without relaxation toward isotropy).
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Anisotropic results

(Ten-moment pair plasma with slow relaxation toward isotropy).
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Anisotropic results

(Ten-moment pair plasma with fast relaxation toward isotropy).
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Anisotropic results

(Ten-moment pair plasma with instantaneous relaxation toward isotropy).
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(Recall: isotropic pair plasma, Ti/Te = 1)

Reconnection in isotropic symmetric pair plasma (coarse mesh).

33



Further investigation

¬ How closely does the current at the origin track the reconnected flux as we refine the mesh?

­ Why does isotropization provide for reconnection?

® Why do we not get reconnection for the ten-moment model unless we isotropize?

¯ Can we incorporate generalized heat flux in the ten-moment model to provide for
reconnection?

° How do resistivity and viscosity affect the rate of reconnection?

± Can we get fast reconnection for a fluid model of collisionless pair plasma with
structure that agrees with PIC simulations?
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