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Outline

@® magnetic reconnection and the GEM problem

@ plasma models

(a) kinetic (Vlasov, PIC)
(b) two-fluid (5- and 10-moment)
(c) one-fluid (MHD)

@ comparison of two-fluid simulations with kinetic simulations

Claim: The 10-moment two-fluid model is able to resolve the structure of the
reconnection region fairly well.

E. Alec Johnson 2



Magnetic Reconnection

Plasma is a gas of charged particles. Charged particles gyrate around magnetic field
lines. So magnetic field lines (like vortex lines) are approximately frozen into the
plasma in the “ideal MHD" regime of small gyroradius and absence of collisional
resistive drag.

The frozen-in-flux condition is violated near magnetic reconnection points.
Specifically, adjacent strongly antiparallel magnetic field lines occasion strong
magnetic field gradients and a large gyroradius, allowing magnetic field lines to
diffuse and alter the topology of the magnetic field.

E. Alec Johnson 3



Magnetic Reconnection

Plasma is a gas of charged particles. Charged particles gyrate around magnetic field
lines. So magnetic field lines (like vortex lines) are approximately frozen into the
plasma in the “ideal MHD" regime of small gyroradius and absence of collisional
resistive drag.

The frozen-in-flux condition is violated near magnetic reconnection points.
Specifically, adjacent strongly antiparallel magnetic field lines occasion strong
magnetic field gradients and a large gyroradius, allowing magnetic field lines to
diffuse and alter the topology of the magnetic field.

E. Alec Johnson 4



Magnetic Reconnection

Plasma is a gas of charged particles. Charged particles gyrate around magnetic field
lines. So magnetic field lines (like vortex lines) are approximately frozen into the
plasma in the “ideal MHD" regime of small gyroradius and absence of collisional
resistive drag.

The frozen-in-flux condition is violated near magnetic reconnection points.
Specifically, adjacent strongly antiparallel magnetic field lines occasion strong
magnetic field gradients and a large gyroradius, allowing magnetic field lines to
diffuse and alter the topology of the magnetic field.

E. Alec Johnson 5



Magnetic Reconnection

Plasma is a gas of charged particles. Charged particles gyrate around magnetic field
lines. So magnetic field lines (like vortex lines) are approximately frozen into the
plasma in the “ideal MHD" regime of small gyroradius and absence of collisional
resistive drag.

The frozen-in-flux condition is violated near magnetic reconnection points.
Specifically, adjacent strongly antiparallel magnetic field lines occasion strong
magnetic field gradients and a large gyroradius, allowing magnetic field lines to
diffuse and alter the topology of the magnetic field.

E. Alec Johnson 6



Magnetic Reconnection

Plasma is a gas of charged particles. Charged particles gyrate around magnetic field
lines. So magnetic field lines (like vortex lines) are approximately frozen into the
plasma in the “ideal MHD" regime of small gyroradius and absence of collisional
resistive drag.

The frozen-in-flux condition is violated near magnetic reconnection points.
Specifically, adjacent strongly antiparallel magnetic field lines occasion strong
magnetic field gradients and a large gyroradius, allowing magnetic field lines to
diffuse and alter the topology of the magnetic field.

E. Alec Johnson I



Magnetic Reconnection

Plasma is a gas of charged particles. Charged particles gyrate around magnetic field
lines. So magnetic field lines (like vortex lines) are approximately frozen into the
plasma in the “ideal MHD" regime of small gyroradius and absence of collisional
resistive drag.

The frozen-in-flux condition is violated near magnetic reconnection points.
Specifically, adjacent strongly antiparallel magnetic field lines occasion strong
magnetic field gradients and a large gyroradius, allowing magnetic field lines to
diffuse and alter the topology of the magnetic field.

E. Alec Johnson 8



Magnetic Reconnection

Plasma is a gas of charged particles. Charged particles gyrate around magnetic field
lines. So magnetic field lines (like vortex lines) are approximately frozen into the
plasma in the “ideal MHD" regime of small gyroradius and absence of collisional
resistive drag.

The frozen-in-flux condition is violated near magnetic reconnection points.
Specifically, adjacent strongly antiparallel magnetic field lines occasion strong
magnetic field gradients and a large gyroradius, allowing magnetic field lines to
diffuse and alter the topology of the magnetic field.

E. Alec Johnson 9



Magnetic Reconnection

Plasma is a gas of charged particles. Charged particles gyrate around magnetic field
lines. So magnetic field lines (like vortex lines) are approximately frozen into the
plasma in the “ideal MHD" regime of small gyroradius and absence of collisional
resistive drag.

The frozen-in-flux condition is violated near magnetic reconnection points.
Specifically, adjacent strongly antiparallel magnetic field lines occasion strong
magnetic field gradients and a large gyroradius, allowing magnetic field lines to
diffuse and alter the topology of the magnetic field.

E. Alec Johnson ].0



Magnetic Reconnection

Plasma is a gas of charged particles. Charged particles gyrate around magnetic field
lines. So magnetic field lines (like vortex lines) are approximately frozen into the
plasma in the “ideal MHD" regime of small gyroradius and absence of collisional
resistive drag.

The frozen-in-flux condition is violated near magnetic reconnection points.
Specifically, adjacent strongly antiparallel magnetic field lines occasion strong
magnetic field gradients and a large gyroradius, allowing magnetic field lines to
diffuse and alter the topology of the magnetic field.

E. Alec Johnson 11



GEM problem

The GEM (Geospace Environment
Modeling) magnetic reconnection
challenge problem was formulated to
compare the ability of different plasma
models to resolve the process of magnetic
reconnection.

e rectangular domain

e boundary conditions: periodic in the
horizontal direction, upper and lower
boundaries are conducting walls

e initial conditions: Harris sheet
equilibrium perturbed by “pinching”
to form an X-point

E. Alec Johnson

Batt=0/Q i (128x64 grid, isotropization period = 6/ i)
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GEM problem: parameters and boundary conditions

Nondimensionalization. The GEM problem nondimensionalizes time by the ion gyrofrequency

Q; = 50 and velocity by the ion Alfvén speed v4; := —20 (making the nondimensionalized
m; ) LominQ

version of the permittivity of free space the reciprocal of the light speed squared).

Computational domain. The computational domain is the rectangular domain [—L, /2, L, /2] X
[—Ly,/2,L,/2], where L, = 87 and L, = 4m. The problem is symmetric under reflection across
either the horizontal or vertical axis.

Boundary conditions. The domain is periodic in the x-axis. The boundaries perpendicular to the
y-axis are thermally insulating conducting wall boundaries. A conducting wall boundary is a solid
wall boundary (with slip boundary conditions in the case of ideal plasma) for the fluid variables, and
the electric field at the boundary has no component parallel to the boundary. We also assume that
magnetic field runs parallel to and so does not penetrate the boundary (this follows from Ohm's law
of ideal MHD, but we assume it holds generally). So at the conducting wall boundaries

Oyps = 0, 0yB, = B, = 0,B, =0,
OyUsy = Usy = OyUs, = 0, E,=0,F,=FE,=0.
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GEM problem: initial conditions

Initial conditions. The initial conditions are a perturbed Harris sheet equilibrium. The unperturbed

equilibrium is given by
B(y) = Botanh(y/\)e,,

n;(y) = ne(y) = no(1/5 + sech’(y/N)),
E =0,

On top of this the magnetic field is perturbed by

0B = —e, X V(v), where
Y(x,y) = pocos(2wx/Ly) cos(my/Ly).

In the GEM problem the initial condition constants are

)\205, BOZ ]_, ng = ].,
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B2
p(y) = 2—0n(y),
no
T
Pe(y) = T Tep(y),
T;
pi(y) = T Tep(y).
Yo = By/10.
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Modeling

The GEM problem has been studied using a
variety of plasma models.

e Kinetic models represent particle velocity v
explicitly.

— Vlasov/Boltzmann models evolve the
particle density of each species in phase
space, fs(x,v,t).

— Particle-in-cell (PIC) models
individual particles.

track

e Fluid models evolve moments of the particle
distribution function, which may be taken
as parameters of a presumed distribution
function.

Fluid models vary in the number of moments:

e Five-moment models evolve density [ fi,
momentum [, fcv, and energy [ fiv®/2
and naturally assume a velocity-space
distribution nearly Maxwellian (isotropic
normally distributed).

e Ten-moment models evolve density,
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momentum, and an energy tensor fv fsvv
and naturally assume a velocity-space
distribution nearly Gaussian (anisotropic
normally distributed).

Fluid models vary in the number of fluids:

e Two-fluid plasma models evolve separate
fluid equations for ions and electrons.

e One-fluid plasma models
(i.e. magnetohydrodynamics (MHD)) evolve
moments summed over all species. MHD
infers electric field from net current balance
(assuming quasineutrality), and
current from Ampere's law (neglecting
displacement current O;E).

assumes

We take the Boltzmann model as the “truth”
and PIC simulations as attempts to approximate
the Boltzmann equation. We desire simple,
computationally efficient fluid models that
accurately replicate the behavior of kinetic
models.
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Equations of particle model

The first principles of classical mechanics say
that particle positions x,(t) and velocities v ()

change according to Newton's laws of motion
dt{’p = Fp thp = Vp

and the Lorentz electromagnetic force law

dp
mp

Fy = —>(Elx, + v X Blx, )

in response to the electric field B(x,t) and
magnetic field E(x,t), which in turn evolve
according to Maxwell's equations

OB = —V X E, V- -B=0,
OE ="V x B—J/ey, V-E = o/e,

where the current density J(x,t) and charge
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density o(x,t) source terms are determined by
particle position and velocity

J = Z Sp(Xp)qpVp,
p

o = Z Sp(Xp)ap-
p

In these equations c is the speed of light,
€o Is electric permittivity, p is particle index,
Vp(t) = ~pVp is (proper) particle velocity, where
v = (1- (fu/c)2)_1/2 ~ 1 is the Lorentz
factor, gy is particle charge, my, is particle mass,
and S,(x — xp,) is particle charge distribution
(e.g., a unit impulse function).
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Equations of Boltzmann/Vlasov model

The Boltzmann equation asserts conservation of particle number density fs(x, v, )
in phase space:

8tfs + Vi - (st) + Vg - (%(E TV X B)fs) — Cs;

here v.= yv ~ v is (proper) velocity and Cj is a collision operator which operates on
the function (v,p) — fp(t,x,V), where p ranges over all species. The collisionless
Boltzmann equation (alias Vlasov equation) asserts that Cs = 0. The relations

J = Z/stqsv, o = Z/stqs.

couple the Boltzmann equation to Maxwell’'s equations

9B = -V xE, V-B =0,
OE = ¢*V x B — J /¢, V-E=0/¢.
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Equations of five-moment two-fluid-Maxwell model

Generic physical equations for the five-moment two-fluid model are: (1) conservation of mass and
momentum and pressure evolution for each species:

8tps + V- (psus) — 07
at(psus) + V- (psusus) + vps — :)1; ps(E + ug X B) + Rs + V - gs7

S

3 3
8t(§ps>+v-(u85p8>+pSV~u—|—V~qS:g:Vu+Q£—I—Q£,
and (2) Maxwell’s equations for evolution of electromagnetic field:

0B+ V xXE=0, V-B =0,
OE — ¢’V x B = —J /e, V- -E=o/e.
A linear isotropic entropy-respecting viscous stress closure is 0 = 2 ( Sym (Vu) — V - ul/3). In
these 5-moment simulations, however, we neglect all collisional effects. So we neglect viscosity, heat

flux (qs = 0), resistive drag force (Rs = 0), resistive heating (Q/ = 0), and interspecies thermal
equilibration (Q. = 0),
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Equations of ten-moment two-fluid-Maxwell model

Generic physical equations for the ten-moment two-fluid model are: (1) conservation of mass and
momentum and pressure tensor evolution for each species:

8tps + V- (psus) — 07

Ot(psus) + V - (psusus + Pg) = as ps(E 4+ us X B) + Ry,
8Py + V - (uPy) + 2 Sym (Ps - V) + V - :RS+Q§+@§+QSym(:; P, x B)
and (2) Maxwell’s equations for evolution of electromagnetic field:
OB +V xE =0, V-B =0,
OE — ¢’V x B = —J/e, V- -E=o0c/e.
A linear isotropic entropy-respecting isotropization closure is Ry = Tis (5(tr Ps)I — Pg) , where for

the isotropization period of species s we used 75 = 79 detgpsmg,
P

S
closure; for the GEM problem this means that /7. & (m;/me.)>* The viscosity is related to

the isotropization period by pus = ps7s. We set 79 = 50. We neglect all other collisional terms:
the heat flux tensors qg, the resistive drag forces Rg, the frictional heating tensors Qg, and the
temperature equilibration tensors Qz.

which is based on the Braginskii

E. Alec Johnson ].9



Results

We ran 5-moment and 10-moment simulations of the GEM problem and compared the results with
the Vlasov simulations of [ScGr06]"' and the PIC simulations of [Pritchett01]*. * All plots were made
at the point in time when 16% (representing one nondimensionalized unit) of the magnetic flux
initially passing through the positive y-axis had been reconnected.

We find that two-fluid models are able to replicate published kinetic simulation plots fairly well,
and that the agreement is better for the ten-moment model than for the five-moment model. In
particular, in comparison with kinetic simulations

e the reconnection electric field agrees well for both fluid models,

e the 10-moment model reconnects at about the same rate and the 5-moment model reconnects a
bit sooner, and

e the 10-moment models matches the qualitative structure of the diffusion region fairly well.

1[ScGr06] H. Schmitz and R. Grauer, Kinetic Vlasov simulations of collisionless magnetic reconnection, Phys. Plasmas
13, 092309 (2006); doi:10.1063/1.2347101

2[PritchettOl] P. L. Pritchett, Geospace Environment Modeling magnetic reconnection challenge: Simulation with a
full particle electromagnetic code, Journal of Geophysical Research, vol. 106, no. A3, pp. 3783-3798 (2001)

3\We have to negate some quantities because we call the vertical axis y and the out-of-plane axis z, opposite to the
convention of [Pritchett01] and [ScGr06].
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Reconnection for 5-moment and 10-moment two-fluid models

We compared the time until 16% reconnection
of the 5-moment and 10-moment models with
reported results:

model 16% flux reconnected
Vlasov [ScGr06] | t = 17.7/€:

PIC [Pritchet0l] | t = 15.7/%:
10-moment t =18/
5-moment t = 13.5/Q;:
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The ten-moment model attained 16% flux
reconnected at about t = 18/);:

Reconnecting flux versus time
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The five-moment model attained 16% flux
reconnected at about t = 13.5/€2;:

Reconnecting flux versus time
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Magpnetic field at 16% reconnected
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Out-of plane electric field at about 16% reconnected
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Diagonal components of the electron pressure tensor
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Off-diagonal components of the electron

pressure tensor
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Plasma Theory: GEM problem

There are only three sources that can provide for magnetic reconnection in any plasma model.

At the X-point, “Ohm'’s law” says that the rate of reconnection is the sum of a resistive term, a
nongyrotropic pressure term, and an inertial term:

rate of reconnection = E3(0) = + + O u;
en; eEn; (&4

3

origin

Consequences:

@ For steady-state reconnection without resistivity the pressure term must provide for the
reconnection.

@ For a gyrotropic plasma without resistivity the inertial term must provide for the reconnection;
i.e. each species velocity at the origin should track exactly with reconnected flux.
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5-moment versus 10-moment reconnection at X-point (pair plasma) .

Without viscosity or resistivity entropy cannot change.
ramp up with reconnected flux as cancelled magnetic field energy is converted to kinetic energy.
Eventually numerical viscosity/resistivity kicks in to balance reconnection and numerical entropy
production permits steady reconnection.

Five-moment reconnection:

accumulation integral of "Ohm's law" terms at the X-point
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t*Qi (time * ion gyrofrequency)

The current at the X-point is forced to

Ten-moment reconnection with relaxation toward
isotropy (viscosity)

accumulation integral of "Ohm's law" terms at the X-point
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Convergence challenges

e The GEM problem is unstable and incompletely posed (unless supplemented by a nonvanishing
collision model).

— Reconnection is a relaxation from higher to lower entropy.

— Collisionless models are hyperbolic (entropy-conserving).

— So simulations of reconnection in collisionless models (e.g. Vlasov simulations, PIC simulations,
and my 5-moment simulations) rely on numerical entropy dissipation.

— GEM problem is unstable to tearing instability (formation of magnetic islands) and depends
critically on choice of collision model.

— Magnetic islands (plasmoids) tend to form. When enforcing symmetry about the X-point a
magnetic island sometimes forms there, stopping reconnection there.

e Problems | am having:

— Central islands: | am enforcing symmetry to facilitate X-point analysis. When a central
island forms | get no reconnection. Central islands seem more likely to occur as | refine the
mesh.

— Negative density/pressure at X-point. My 10-moment simulations typically blow up at the
X-point, generally in the interval 20 < Q,t < 25.

« Near-vanishing density and/or highly anisotropic pressure near X-point causes vulnerability.
x| hope that adding heat flux diffusion will regularize behavior near the X-point.
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Future work

@ Add viscosity to five-moment model and verify that it agrees with the 10-moment
model with isotropization.

@ Add heat flux to regularize solutions and demonstrate convergence for fine mesh.
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