
Array-of-Struct particles for iPic3D on MIC

Alec Johnson and Giovanni Lapenta

Centre for mathematical Plasma Astrophysics
Mathematics Department

KU Leuven, Belgium

EASC2014
Stockholm, Sweden

April 3, 2014

Abstract: We are porting iPic3D to the MIC for particle processing. iPic3D advances both the
electromagnetic field and the particles implicitly, requiring typically 100-200 iterations of the field
advance and 3-5 iterations of the particle advance for each cycle. We use particle subcycling to
limit particle motion to one cell per cycle, which improves accuracy and simplifies sorting. To
accelerate sorting, we represent particles in AoS format in double precision so that particle data
exactly fits the cache line width. To vectorize particle calculations, we process particles in blocks:
a fast 8x8 matrix transpose implemented in intrinsics converts each 8-particle block between SoA
and AoS representation.

Johnson and Lapenta (KU Leuven) AoS for particles on MIC April 3, 2014 1 / 16

porting iPic3D to MIC

Goal: efficiently converged multiscale simulation of plasma
Tool: iPic3D, an implicit particle-in-cell code
Task: port to Xeon + Phi (MIC):

improve MPI
use OMP threads
vectorize

Key issue: data layout of particles
Ordering:

SoA for vectorization (push and sum)
AoS for localization (sorting)

Granularity of particles:
grouped by cell: vectorization efficiency
grouped by thread subdomain: cache efficiency

Johnson and Lapenta (KU Leuven) AoS for particles on MIC April 3, 2014 2 / 16

Agenda: justify choices

The purpose of this presentation is to justify four algorithm choices:

Two fundamental determinations:
1 Subcycle particles:

for each particle, break time
step into substeps
move the particle at most
one cell per substep
motivation: accurate
simulation of fast-moving
particles
benefit: simpler sorting

2 Use Array-of-Structs (AoS)
for particles.

motivation: fast sorting
can still vectorize via fast
transpose/intrinsics

Two secondary determinations:
1 Use double precision for particles.

Vlasov solver via resampling.
no mixed precision.
particle exactly fits cache line.

2 Use AoS field to push particles.
motivation: better localization of
field data access
justification: one transpose per
cycle is justified by numerous
particle iterations and amortized by
many iterations of SoA field solver.

Johnson and Lapenta (KU Leuven) AoS for particles on MIC April 3, 2014 3 / 16

Outline

1 iPic3D algorithm

2 Algorithm choices

Johnson and Lapenta (KU Leuven) AoS for particles on MIC April 3, 2014 4 / 16

Equations of iPic3D

iPic3D simulates charged particles
interacting with the electromagnetic field.
It solves the following equations:

Fields:

∂t B(x) + ∇ × E(x) = 0

∂t E(x) − c2∇ × B(x) = −J(x)/ε0,

Particles:

∂t vp =
qp
mp

(
E′(x′

p) + vp × B′(x′
p)

)
,

∂t xp = vp,

Moments (10):

(1) σ(x) :=
∑

p
S(x − xp)qp

(3) J(x) :=
∑

p
S(x − xp)qpvp

(6) P(x) :=
∑

p
S(x − xp)qpvpvp

The Implicit Moment Method uses these 10
moments (with E and B) to estimate J.

Discretization:

∂t X := Xn+1−Xn
∆t .

X = 1
2 Xn+1 + 1

2 Xn.

Current Evolution

∂t Js + ∇ · Ps = qs
ms

(
σ

′
sE + Js × B′

)
Average current responds linearly to electric field:

J = Ĵ + A · E,

where:

Ĵ :=
∑

ŝ
Js,

Ĵs := Πs ·
(

Jn
s − ∆t

2 ∇ · Ps
)

,

A :=
∑

s
βsσ

′
sΠs,

Πs :=
I − B̃s × I + B̃sB̃s

1 + |B̃s|2
,

B̃s := βsB′
,

βs := qs∆t
2ms .


Implicit Particle Advance

vp =

(
I − B̃p × I + B̃pB̃p

1 + |B̃p|2

)
·
(

vn
p + βsE′(xp)

)
, where

B̃p :=
qp∆t
2mp B′(xp), and

xp = x0
p + ∆tvp.

Johnson and Lapenta (KU Leuven) AoS for particles on MIC April 3, 2014 5 / 16

iPic3D cycle

iPic3D cycles through three tasks:
1 fields.advance(moments)
2 particles[s].move(fields)
3 moments[s].sum(particles[s])

Moving particles consists of pushing and sorting, e.g.:
foreach subcycle c:

foreach particle:
particle.push(field(cell(particle)))
particle.sort()

particles.communicate()

Johnson and Lapenta (KU Leuven) AoS for particles on MIC April 3, 2014 6 / 16

Outline

1 iPic3D algorithm

2 Algorithm choices

Johnson and Lapenta (KU Leuven) AoS for particles on MIC April 3, 2014 7 / 16

Mapping data to architecture

Balance two goals:
1 flexibility where

architectures/algorithms differ
2 best particulars where

architectures/algorithms agree

Architecture key attributes:
1 Width of cache line: 8 doubles =

512 bits (fairly universal)
2 Width of vector unit:

8 doubles = 512 bits for MIC
4 doubles = 256 bits for Xeon with AVX
2 doubles = 128 bits for SSE2

Data of algorithm:
1 fields: 6 doubles (two vectors) per

mesh cell:
1 Bx magnetic field
2 By magnetic field
3 Bz magnetic field
4 ψ (B correction potential)
5 Ex electric field
6 Ey electric field
7 Ez electric field
8 φ (E correction potential)

2 100s of particles per mesh cell;
8 doubles (2 vectors + 2 scalars)
per particle:

1 u velocity
2 v velocity
3 w velocity
4 q charge (or particle ID)
5 x position
6 y position
7 z position
8 t subcycle time

Johnson and Lapenta (KU Leuven) AoS for particles on MIC April 3, 2014 8 / 16

(1) Why subcycle?

Traditionally the implicit moment method moves all particles with the same time
step.
We are implementing subcycling:

For each particle, the global time step is partitioned into substeps.
Substeps stop particles at cell boundaries.

Benefits of subcycling:
1 Simplifies sorting:

SoA vectorization requires sorting particles by mesh cell.
Subcycling guarantees that particles move only one mesh cell per subcycle.
Without subcycling, particles can move arbitrarily far between sorts.
Without subcycling, particles must be sorted with every iteration of the
implicit mover.
Without subcycling, sorted particle data must include average position
data and no longer fits in a single cache line.

2 Subcycling is needed to resolve fast particles accurately.
Maxwell’s equations need time-averaged current.
Subcycling is needed to get correct time-averaged current of fast particles.

Johnson and Lapenta (KU Leuven) AoS for particles on MIC April 3, 2014 9 / 16

(2) AoS particle vectorization

Usually SoA is preferred for vectorization.
But AoS particles can still be vectorized in one of two ways:
Fast matrix transpose

8-component particles
(subcycled case):

Represent as AoS
Process in 8-particle blocks
Convert blocks to/from SoA using
fast 8x8 matrix blocked transpose
(28-36 8-wide vector instructions)

12-component particles
(non-subcycled case):

Consider padding extra components
to 8 (faster sort); otherwise:
first 8 components handled like
8-component particles
last 4 components handled like
4-component particles using fast
4x8↔8x4 transpose (16 8-wide
vector instructions).

Physical vectors (intrinsics-heavy):

MIC:
process 2 particles at a time
concatenate velocity vectors:
[u1, v1, w2, q1, u2, v2, w2, q2]
concatenate position vectors:
[x1, y1, z1, t1, x2, y2, z2, t2]
Use physical vector operations
(use swizzle for cross-product)

Xeon
process 1 particle at a time (or 2 at a
time for single precision)

Johnson and Lapenta (KU Leuven) AoS for particles on MIC April 3, 2014 10 / 16

Pusher times on Xeon Phi [feasibility studies]

Pusher times in iPic3D:
time pusher
========= ========
0.102 sec SoA (but also need to sort each iteration)
0.202 sec AoS_intr (no sort required, but helps cache)
0.259 sec AoS (no sort required, but helps cache)

Pusher times for a single iteration:
time pusher
=========== ========
.07 Mcycles SoA
.13 Mcycles AoS_tran (8-pcl blocks via fast 8x8 transpose)
.21 Mcycles AoS_intr (2-pcl blocks with intrinsics mover)

Pusher times for 4 iterations stopping at cell boundary:
time pusher
=========== ========
.36 Mcycles SoA
.40 Mcycles AoS_tran (8-pcl blocks via fast 8x8 transpose)
[unimplemented] AoS_intr (no need to sort with each subcycle)

Johnson and Lapenta (KU Leuven) AoS for particles on MIC April 3, 2014 11 / 16

Sorting efficiently

Cache-line-sized particles facilitate
sorting:

can transfer particles directly
to memory destination with
no-read writes
no cache contention
vector unit divides cache line
size, so fully utilized

Sort particles by:
1 process subdomain (for MPI),
2 thread subdomain, and
3 mesh cell (for vectorization)

To hide communication latency, overlap
process-level communication with thread-level
sorting.

General sort:
send exiting particles
sort particles in process
wait on incoming particles
sort incoming particles

Subcycle sort (moving ≤ 1 cell per
subcycle):

move particles in boundary cells
send particles in ghost cells
move particles in interior cells
move incoming particles

Johnson and Lapenta (KU Leuven) AoS for particles on MIC April 3, 2014 12 / 16

Using AoS fields and moments in particle solver

In the field solver we represent fields and moments in SoA format.
This allows better vectorization of the implicit solver.
In the particle solver, we represent fields and moments with AoS format:

AoS gives better localization of random access.
SoA fields and moments offer no benefit to vectorization of particle
processing.
The transpose is done only once per cycle.

Johnson and Lapenta (KU Leuven) AoS for particles on MIC April 3, 2014 13 / 16

Summing moments as AoS

0 1 2 3 4 5

−6

−4

−2

0

2

log2 of number of cards

lo
g2

of
tim

e
in

10
0t

h
cy

cle
in

se
co

nd
s

summing moments, computation, Xeon Phi [strong scaling]

AoS moments
SoA moments

Figure : log-log plot showing strong scaling of time spent in summing moments (excluding communication).
On each card 60 MPI processes were run, with 4 threads per MPI process, both in the new and the old code.

Johnson and Lapenta (KU Leuven) AoS for particles on MIC April 3, 2014 14 / 16

Using AoS fields and moments in particle solver

0 1 2 3 4 5

−6

−4

−2

0

2

log2 of number of cards

lo
g2

of
tim

e
in

10
0t

h
cy

cle
in

se
co

nd
s

moving particles, computation, Xeon Phi [strong scaling]

AoS fields
SoA fields

Figure : log-log plot showing strong scaling of time spent in moving particles (excluding communication). On
each card 60 MPI processes were run, with 4 threads per MPI process, both in the new and the old code.

Johnson and Lapenta (KU Leuven) AoS for particles on MIC April 3, 2014 15 / 16

Summary

Trade-offs in SoA vs. AoS particles:
SoA particles better for vectorization.
SoA particles require sorting with each iteration or subcycle.
AoS particles better for sorting.
AoS allows infrequent sorting.
fast 8x8 transpose converts between AoS and SoA.

Conclusions:
Use AoS for basic particle representation.
Convert to SoA in blocks when beneficial for vectorization.

Johnson and Lapenta (KU Leuven) AoS for particles on MIC April 3, 2014 16 / 16

	iPic3D algorithm
	Algorithm choices

