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Abstract

Fully explicit discretizations must resolve all three processes that ideal
MHD assumes are instantaneous: oscillations, collisions, and light
waves. Asymptotic-preserving discretization requires stepping over these
processes. Fully implicit discretization allows stepping not only over
these three processes but also over MHD waves, but is expensive
because one must repeatedly re-push particles with successive iterations
of the implicit field solver. We therefore present semi-implicit
discretizations of Maxwell’s equations that step over subsets of these
processes. Discretizing implicitly in the source term steps over plasma
oscillations and collisions and allows asymptotic-preserving agreement
with (quasi-)relativistic MHD. Discretizing the flux terms of Maxwell’s
equations implicitly steps over light waves and allows
asymptotic-preserving agreement with classical two-fluid MHD.
To facilitate asymptotic-preserving agreement with fluid models and
conservation of physical invariants, we consider kinetic fluid closure.

kinetic-Maxwell (the “truth”)

particle evolution:
dtxp = vp,

dtup =
qp

mp
(vp × B(xp) + E(xp)) ,

γ2
p := 1 + (up/c)2,

vp := up/γp.

electromagnetic field:
∂tB +∇× E = 0,
−c−2∂tE +∇× B = µ0J,
∇ ·B = 0, c−2∇ ·E = µ0σ,

where σ(x) :=
∑

p Sp(x)qp is charge
density and J(x) :=

∑
p Sp(x)qpvp is

current density; here Sp(x) = S(x − xp) is
the shape function of particle p. To
abbreviate, we drop the particle
summation index p and the independent
variable x and write
σ :=

∑
qS (charge),

ρ :=
∑

mS (mass),
J :=

∑
vqS (current),

M :=
∑

vmS (momentum),
E :=

∑1
2|v |

2mS (energy).

Modeling and Fluid Moments

Fields evolve in response to charge moments, and mass, momentum,
and energy are conserved, motivating the use of fluid models. Kinetic
closure allows kinetic algorithms to transition efficiently and smoothly to
fluid models.

Moment evolution

Moment definitions are of the form∑
χS. To derive fluid equations, we

differentiate the moment definition with
respect to time and use the basic
derivatives to the right.

Charge density evolution.
∂tσ +∇ ·J = 0 ,

using ∂tσ =
∑

q̇S +
∑

q∂tS,
∂tS = −v ·∇S, and ∇v = 0.

General moment evolution
∂t

∑
χS +∇ ·

∑
vχS =

∑
χ̇S,

χ̇ =
∂χ

∂u
· u̇ =

∂χ

∂v
· v̇.

Shape motion:
∂tS = −v ·∇S , (1)

where we have used the chain rule.
Lorentz force.

u̇ = q
m (E + v × B) ;

Energy change.
γ̇ = v · u̇ = q

mv ·E , (2)
because γ2 = 1 + (u/c)2, so γγ̇ = u · u̇/c2.

Velocity change.
v̇ = q

γm

(
E − vv

c2 ·E + v × B
)
,

which follows from differentiating u = γv, to
get u̇ = γ̇v + γv̇, i.e. γv̇ = u̇ − vv · u̇.

Current evolution (Ohm’s law)

Current evolution (Ohm’s law, χ = qv).

∂tJ +∇ ·P =
∑

S q2

γm

(
I− vv

c2

)
·E +

∑
S q2

γm × B ,

where P :=
∑

qvv.

Classical current evolution for
species s.
∂tJs +∇ ·Ps =

qs
ms
(σsE + Js × B) ,

where Ps restricts to species s.

Mass moment evolution

Relativistic case.
Mass density (χ = m).
∂tρ +∇ ·

∑
mvS = 0.

Momentum density (χ = mu).
∂tM +∇ ·

∑
mvuS = σE + J × B ,

Energy density (χ = mc2γ).
∂tE +∇ ·M = J ·E ,

Classical case.
Mass density (χ = m)
∂tρ +∇ ·M = 0 ,

Momentum density (χ = mv)
∂tM +∇ ·

∑
mvvS = σE + J × B ,

Energy density (χ = 1
2m|v|2)

∂tE +∇ ·
∑

1
2mvv2S = J ·E ,

Semi-implicit methods

Semi-implicit methods are used to step over fast processes such as plasma oscillations
(implicit source) and light waves (IMM) without having to step over all processes.

Field discretizations

The Implicit Moment Method is an example of a semi-implicit method. For plasma
simulations, one of four types of discretization is generally used:
Discretization must resolve. . . must iterate. . .
1. Explicit plasma period [everything] [no iteration]
2. Implicit Source light waves classical: no iteration

relativistic: source iteration
3. Implicit Moment (IMM) electron sound waves iterate fields
4. Fully implicit [no restriction] iterate particles [everything]
The Implicit Source discretization naturally suits an asymptotic-preserving transition to
relativistic MHD, since ideal relativistic MHD takes the electron charge (gyrofrequency)
to infinity. The Implicit Moment Method naturally suits an asymptotic-preserving
transition to two-fluid MHD, which takes light speed to infinity.

Explicit discretization

Start with the basic equations:
∂tB +∇× E = 0,
∂tE − c2∇× B = −J/ε0,

∂txp = vp,

∂tup =
qp

mp
(E(xp) + vp × B(xp)) .

For a second-order discretization,
use a leapfrog discretization, and

time-split velocity update for a symplectic method:
B2 = B0 −∆t∇× E1,

E1 = E−1 +∆tc2∇× B0 − J0/ε0,

u∗
p = u0

p +
qp

2mpγ0
p
(u∗

p + u0
p)× B1(x1

p),

u2
p = u∗

p +
qp

mp
E1(x1

p),

where B1 := 1
2B0 + 1

2B2.

Fully implicit method

Modify the IMM discretization by
making all terms implicit:
∂tB +∇× E = 0
∂tE − c2∇× B = −J/ε0

∂tup =
qp

mp

(
σpE(xp) + vp × B(xp)

)
,

∂txp = vp,

∂tσs +∇ ·Js = 0,
∂tJs +∇ ·P s =

qs
ms

(
σsE + Js × B

)
.

Remarks.

I Particle advance must be redone with
successive iterations of the field solver.

I This discretization is fully symmetric in
time, so by Noether’s theorem
conserves energy if iterated to
convergence.

Implicit Source discretization [KumarMishra11]

Use initial values for flux terms. Use
implicit values in stiff source term.
∂tB +∇× E = 0,
∂tE − c2∇× B = −J/ε0,

∂tup =
qp

mp

(
E(xp) + vp × B(xp)

)
,

∂txp = vp,

∂tσs +∇ ·Js = 0,

∂tJs +∇ ·Ps =
qs
ms

(
σsE + Js × B

)
.

Time discretization is
∂tQ → (Q1 − Q0)/∆t ,
∇F → F 0,

X = X 1

Classical case: No source term iteration happens
to be needed, because v is linear in E. Can sum the
response over all particles to eliminate J = Ĵ + A ·E
in favor of E.

Relativistic case: Must iterate particle velocity
advance, but positions need not be advanced, so
iterative solve involves no communication between
mesh cells.
High-order accuracy: Use an IMEX Runge-Kutta
solver.

IMM (implicit moment method) [VuBrackbill92]

Modify the Implicit Source
discretization by using implicit flux
for electromagnetic field advance,
but keep the particle position
advance explicit.
∂tB +∇× E = 0
∂tE − c2∇× B = −J/ε0,

∂tup =
qp

mp

(
E(xp) + vp × B′(xp)

)
,

∂txp = vp,

∂tσs +∇ ·Js = 0,

∂tJs +∇ ·Ps =
qs
ms

(
σ′

sE + Js × B′
)

For second-order accuracy in
relevant terms, use time averages
for the implicit terms:
∂tQ → (Q1 − Q0)/∆t ,
∇F → F 0,X = 1

2X 0 + 1
2X 1,

v = 1
2v0 + 1

2v1,

J = 1
2J0 + 1

2J1,

E = 1
2E0 + 1

2E1.

Observe that in this discretization,
∂tX = 2(X − X 0)/∆t .

Divergence constraints. Eliminating B from this
field discretization and assuming mimetic operators,
the field solve is exactly equivalent to

c−2∂tE = (1
2∆t)

(
∇2E −∇(∇ ·E)

)
+
(
∇× B0 − µ0J

)
;

following [RicciLapentaBrackbill02], to ensure the
divergence constraint error is damped, substitute
(∇ ·E) → (µ0c2σ).

Classical case. No iteration is needed, because v is
linear in E. Can sum the response over all particles
to eliminate J = Ĵ + A ·E in favor of E. IMM in
literature uses B′ = B0 and σ′

s = σ0
s , but

B′ = B0 −∆t∇× E0 and σ′
s = σ0

s −∆t∇ ·J0 would
yield full second-order accuracy in time.
Relativistic case. Implicit Source seems preferable
to IMM for the relativistic case:

I Why step over light waves but not over
relativistic sound waves or fluid speed? An IMEX
time step is much cheaper and involves no
long-distance communication.

I The source term system responds nonlinearly to
E and is not closed, so an implicit particle
velocity advance must be repeated with
successive iterations of the field solve.

Implicit particle mover (classical)

Particle position and velocity are differenced as
x1

p = x0
p + vp∆t , vp :=

1
2v1

p +
1
2v0

p,

v1
p = v0

p + 2βp

(
Eθ

p + vp × Bϑ
p

)
,

where ϑ might equal θ or 0 and

βp :=
qp∆t
2mp

.

Choosing Bϑ
p := Bϑ(x0

p) yields an explicit particle
advance. Choosing Bϑ

p := Bϑ(xp) and
Eθ

p := Eθ(xp), where

xp :=
1
2x1

p +
1
2x0

p,

defines an implicit particle advance. Use 2
iterations starting with an explicit advance for
2nd-order accuracy. Eliminating v1

p in favor of vp,

vp = v0
p + βp

(
Eθ

p + vp × Bϑ
p

)
.

This is of the form
U = V + U ×Ω, i.e., (3)
(I +Ω× I) ·U = V, (4)

where U = vp, V = v0
p + βpEθ

p, and Ω = βpBϑ
p. To solve for

U, cross and dot both sides with Ω:
U ×Ω = V ×Ω +ΩΩ ·U − |Ω|2U, and
U ·Ω = V ·Ω, so eliminating U ×Ω in (3),
U(1 + |Ω|2) = (I−Ω× I +ΩΩ) ·V, i.e.,
U = (1 + |Ω|2)−1 (I−Ω× I +ΩΩ) ·V;

from this and (4), we infer that

(I +Ω× I)−1 = (1 + |Ω|2)−1 (I−Ω× I +ΩΩ) .

Thus,
vp = Πϑ

p · (v0
p + βpEθ

p), where
Πϑ

p := (I− I×Ωp)
−1 and

Ωp := βpBϑ
p.

Observe that |Ωp| is half the gyrofrequency for particle p.
Note that ϑ ∈ {0, θ} is chosen based on whether the
updated magnetic field is already known. A
first-order-accurate field predictor allows for a fully
second-order-accurate solve with ϑ = θ = 1

2.

Conforming fluid-Maxwell

The Implicit Moment Method may be criticized, because although it exactly maintains ∇ ·B = 0 and damps
∇ ·E − σ/ε0, it is not exactly conforming and does not conserve momentum and energy. This can be
remedied, however, with a predictor-corrector approach, where particle distributions are tweaked to match
evolved, slaved fluid quantities.

Divergence constraints: consistency of fields with fluid moments

A predictor-corrector strategy can be used to maintain the divergence constraints to machine precision
while maintaining order of accuracy for arbitrarily high order:
1. Evolve the fields with sufficient accuracy.
2. Evolve face-normal field fluxes using the evolved fields.
3. Enforce consistency of the evolved fields with the evolved face-normal field fluxes.

Enforcing ∇ ·B = 0:
Integrating magnetic field evolution over a time step and over a mesh cell face A gives∫

A
n̂ ·B1 =

∫
A

n̂ ·B0 −∆t
∮
∂A

τ̂ ·E,

where E is the time-averaged value of the the electric field on the edges of the face. A predictor step can be
used to supply high-order-accurate values of the average value of the parallel component of E along each
edge, giving a high-order-accurate update of the total magnetic flux perpendicular to each face. For any
order of accuracy, there is at least enough freedom to enforce that the magnetic field representation
satisfies these constraints, and when extra freedom is available one can do so so as to minimize a norm.
Enforcing ∇ ·E = σ/ε0:
Integrating electric field evolution over a time step and over a mesh cell face A gives∫

A
n̂ ·E1 =

∫
A

n̂ ·E0 + c2∆t
∮
∂A

τ̂ ·B −∆t
∫

A
n̂ ·J/ε0;

to maintain consistency, define J using the flux of charge across face A, update the face-normal electric
field flux accordingly, and modify the electric field representation to enforce consistency.

Conservation framework

To enforce exact conservation of momentum and energy, use Maxwell’s equations to put evolution in
conservation form.
Conservation of momentum.
To put momentum equation in conservation form, rewrite the source term as the sum of a time derivative
and a spatial derivative:
−(σE + J × B)/ε0 = ∂t(E × B) + 1

2∇(E2 + c2B2)−∇ · (EE + c2BB),

where we have used all four Maxwell’s equations and a vector product rule.
Conservation of energy.
To put energy evolution in conservation form, rewrite the source term as
−J ·E/ε0 = 1

2∂t(E2 + c2B2) +∇ · (E × B),

where we have used Maxwell’s evolution equations and the identity
E ·∇× B = B ·∇× E −∇ · (E × B).
Positivity.
Conservation form allows an explicit fluid code to enforce positivity using the framework of Outflow Positivity
Limiting, as described in [JoRo12]. Here we assume that the thermal energy, defined as the gas-dynamic
energy in the reference frame in which the gas-dynamic momentum is zero, is a concave function of the
conserved state variables (ρ, M̃, Ẽ ,B,E), where Ẽ := E + 1

2(E
2 + c2B2) is defined to be the total energy and

M̃ := M + E × B is defined to be the total momentum.

Porting of iPic3D to DEEP

We are porting iPic3D to the Dynamic Exascale
Entry Platform (DEEP). DEEP is an Exascale
project funded by the EU 7th framework
programme.

DEEP: Cluster attached to Booster

The architecture of DEEP consists of a 128-node,
21.3 teraflop Cluster of 16-core 2.7 GHz Intel
Xeon processors connected to an infiniband
network and will be augmented with a a 512-node,
590 teraflop Booster each of whose nodes is a
1.2 GHz 60-core Xeon Phi MIC (Many Integrated
Core) accelerators.
The DEEP architecture was developed with the
idea of accelerating codes that run on the cluster
by making it easy to offload computationally
intensive parts of the code to the booster while
leaving complex, communication-intensive code
on the cluster.

FieldSolver on Cluster, ParticleSolver on
Booster

iPic3D implements the implicit moment method
and consists of a cycle of three steps:
1. (ParticleSolver): Sum moments Ĵ0, σ0, and σ0

s of
particles.
Communicate moments to FieldSolver.

2. (FieldSolver): Advance the electromagnetic
field, E0 → E1, using moments.
Communicate fields to ParticleSolver.

3. (ParticleSolver): Advance the particles using the
already advanced fields.

Due to its implicit nature, the FieldSolver makes
many all-to-all communications and naturally is
best suited to the Cluster.
In contrast, since particles can be pushed in
parallel, the ParticleSolver only needs to
communicate particles to neighboring processors
in the torus.
To increase resolution and demonstrate
converged solutions, the number of particles per
mesh cell must increase. Therefore, in the high
resolution limit, computing particles increasingly
dominates PIC codes. The port of iPic3D to DEEP
aims for unprecedented resolution of turbulent
reconnection on long time scales in the classical
regime.
A beneficial side-effect of the DEEP port is the
clean separation of the particle solver and the field
solver. This allows replacing one or the other as
appropriate:
I The FieldSolver could be replaced with an

Implicit Source field solver or could be iterated
to yield a fully implicit discretization.

I The ParticleSolver could be replaced with a fluid
model or a gyrokinetic or relativistic mover.
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