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Abstract N Implicit Source discretization [KumarMishra11] Porting of iPic3D to DEEP
~ully explicit discretizations must resolve all three processes that ideal Use initial values for flux terms. Use Classical case: No source term iteration happens We are porting iPic3D to the Dynamic Exascale
MHD assumes arle mstanta.neou.s: osgllla.tlonS, CO_”ISIOHS, apd light implicit values in stiff source term. to be needed, because v is linear in E. Can sum the Entry Platform (DEEP). DEEP is an Exascale
waves. Asymptotic-preserving discretization requires stepping over these OB+ V xE=0 response over all particles to eliminate J =J + A-E  project funded by the EU 7th framework
processes. Fully implicit discretization allows stepping not only over 9%E _ 2V « B | J/e in favor of E. programme.
[B= — 0

these three processes but also over MHD waves, but is expensive

because one must repeatedly re-push particles with successive iterations O, = - (E(Xp) + Vp X B(Xp)) , Relativistic case: Must iterate particle velocity .

of the implicit field solver. We therefore present semi-implicit AX, — Wy, gdvapce, blut posmlcns need not be. adyan%ed, SO DEEP: Cluster attached to Booster
discretizations of Maxwell’s equations that step over subsets of these 90+ V +dy = 0. teralive solve involves no communication between

processes. Discretizing implicitly in the source term steps over plasma - mesh cells.

oscillations and collisions and allows asymptotic-preserving agreement O+ V-Pi=m (UsE s X B) - High-order accuracy: Use an IMEX Runge-Kutta

with (quasi-)relativistic MHD. Discretizing the flux terms of Maxwell’s Time discretization is solver. [

equations implicitly steps over light waves and allows 0Q — (Q' — Q) /At

asymptotic-preserving agreement with classical two-fluid MHD. VF — F°,

To facilitate asymptotic-preserving agreement with fluid models and X=X -

conservation of physical invariants, we consider kinetic fluid closure.

IMM (implicit moment method) [VuBrackbill92] CN

kinetic-Maxwell (the “truth™) g
| | | Modify the Implicit Source Divergence constraints. Eliminating B from this S S
particle evolution: where o(X) := ) _, Sp(X)qp Is charge discretization by using implicit flux  field discretization and assuming mimetic operators,
drXp = Vp, density and J(x) := >, Sp(X)qpVp 1S for electromagnetic field advance,  the field solve is exactly equivalent to The architecture of DEEP consists of a 128-node,
diu, = %; (v, x B(x,) + E(x,)), currentdensity; here S,(X) = S(X —X,) 18 pyt keep the particle position c20,E = (1A1) (VZI_E _ (V- E)) n (V <« B _ MOJ> . 21.3 teraflop Cluster of 16-core 2.7 GHz Intel
T =1+ (Up/)" Zhbebfgﬁﬁfeﬂiﬂﬁ e OIhpeart;ilt?cFe' ° advance explictt followin [RizcciLa entaBrackbill02], to ensure the Xeon processors connected to an Infiniband
Vp := Up/p. summation, Index ppand trr)we iIndependent OB +V xE — 0 _ divergegce constrF;int error IS damp;ed substitute network and will be augmented with a a 51 2.-node,
i fiald- _ | OE — 2V x B = —J/e, S - ’ 590 teraflop Booster each of whose nodes is a
electromagnetic field variable x and write _ (V-E) = (10C°0). 1.2 GHz 60-core Xeon Phi MIC (Many Integrated
B +V x E =0, 0= 2.Q9S (charge). Oy = %I; (E(X/o) +Vp X B/(Xp)> v Classical case. No iteration is needed, because v is C.ore) accelerators.
—c20E + V x B = jupd, p =) mS (mass), OrX, = Vo, linear in E. Can sum the response over all particles The DEEP architecture was developed with the
V-B=0, ¢ °V-E= o, J:=2.vgsS (current), 0o+ V - Jg = 0, to eliminate J = J + A - E in favor of E. IMM in idea of accelerating codes that run on the cluster
W B Zymi (momentum) Od. +V-P, =& (UgE +Jd. % B’) Ilt/eratuge uses B :OBO ancl 0 :OOS, out ; by making it easy to offload computationally
&= 5vVI"'mS (energy). " . B'=B" - AtV xE"and o, = o — AtV - J* would intensive parts of the code to the booster while
-or second-order accuracy In yield full second-order accuracy in time. leaving complex, communication-intensive code
Modeling and Fluid Moments relevant terms, use time averages  pgatjvistic case. Implicit Source seems preferable  on the cluster.

for the implicit terms: to IMM for the relativistic case:

Fields evolve In response to charge moments, and mass, momentum, 0;Q — (C?1 — QO) /At . FieldSolver on Cluster, ParticleSolver on
and energy are conserved, motivating the use of fluid models. Kinetic VF — FO X = % X0 1 % X' g \r/glgs’:i\?itset?cos\;eljr:lc?C\;[av\\/lg\s/eosr I?Ill“'j dngt (e)gzt? An IMEX Booster
closure allows kinetic algorithms to transition efficiently and smoothly to v = 1yO0 o 1y : . H ch qi P Ve o | o
fluid models. 5 EJO N iﬂ’ Ilme Step IS much cheaper and involves no iIPic3D implements the implicit moment method
AR ong-distance communication. | and consists of a cycle of three steps:
E=3E"+3E" » The source term system responds nonlinearly to 1. (ParticleSolver): Sum moments J°, o2, and o0 of
o L Observe that in this discretization, E and Is not closed, so an implicit particle particles. S
I\/IomSen_’:_defln.ltlo?ls are of the form Shape motion: 9 _ 2()_( B XO)/AZ‘ velocity advance must be repeated with Communicate moments to FieldSolver
2, x5. 10 derive fluid equations, we xS = —V-VS, (1) o | successive iterations of the field solve. 2 |

differentiate the moment definition with .
. . where we have used the chain rule.
respect to time and use the basic

derivatives to the right. Lorentz force. Implicit particle mover (classical)
u=-2(E+vxB);

. (FieldSolver): Advance the electromagnetic
field, E° — E', using moments.
Communicate fields to ParticleSolver.

Charge density evolution. Particle position and velocity are differenced as ~ where U = v,,, V = v? + 5.E?, and © = 3,B". To solve for 3. (ParticleSolver): Advance the particles using the
0 V-d=0 Energy change. 1 0 | Y 1y1 . 1y0 U, cross and dot botFm sidespwith : ' :
© +@ | 2_: | S 00, v—v.u=23y.E (2) X, = X, + VAL, V=3V, + 35V, U oV 600 \Q\ZU. | already advanced fields.
using oio = ) _qo + ) _qoto, m ’ | | v =v0 123 (E’ + v, x BY), X Q=VxQ+ U — , an L .. .
9;S = —v-.-VS, and Vv = 0. because 12 = 1 + (u/c)2, s0 vy = u-u/c?. p = Y 5p( p T Vp p) U.Q — V.Q. soeliminating U x €2 in (3), Due to its implicit nature, the FieldSolver makes

where 1 might equal ¢ or 0 and many all-to-all communications and naturally Is

General moment evolution Velocity change. U1 +[QPF)=1-2xI+0QQ)-V,ie,

: g,Al N ' _
8tZXS—|—V-ZVXS:ZXS’ V:,yim(E—\é—\gl'E—FVXB), 5}) — 2Pm . U:('I—I—‘Q‘Z) 1(H—QXH—I—QQ)°V; beSt SUI’[ed tO the CIUS.ter |
8X . 8X . which follows from differentiating U=V, to . P 9 I WO . o _ from this and (4), we Infer that |ﬂ COntraSt, SiNCce par“CleS can be pUShed N
X=——--U=_"2"-V. Fl — AV AV e Y — U — UV - C Choosing B;, := B'(x;) yields an explicit particle 4 o\ 1 arallel, the ParticleSolver only needs to
ou OV getu ="v+av,1.e. v =u-—vw-u. advance. Choosing B := B’(X,) and (I+QxID)" =(1+[Q7) (I[-2xI1+0Q). P B o _ 3(1 _
_ , E’ .= EY(X,), where Thus. pommunlcate particles to neighboring processors
Current evolution (Ohm’s law) X, = 1! + 100, v, = N7 (V0 + 5,E%), where In the torus.
. L . J . ~1 ' '
Current evolution (Ohm'’s law, x = qv). Classical current evolution for defines an implicit particle advance. Use 2 = (I _ﬁﬂ < §3,)"" and fo Increase reSQIUtIOn ana demOnStrate.
Id -V .-P — qu_Z ( B g) E + qu_z < B species s. iterations starting with .an.explicit ao!vanoe for i 2, = 5,B,. converged SOlu’[.IOnS, the number of p.artlcles. per
t ~m c2 ym ) e+ VP — %(O’SE 1 J, xB). 2nd-order accuracy. Eliminating vll in favor of v,,  Observe that Q.| is half the gyrofrequency for particle p. mesh cell must increase. Therefore, in the high
where P := > qVV. Where restrictssto species v, = 0+ BP(EQ LV x Bﬁ). Note that ¢ € {OZ 9}. IS clhosen based on whether the resolution limit, computing particles increasingly
S This is Sf he forfn ’ updated magnetic field is already known. A dominates PIC codes. The port of iPic3D to DEEP
: first-order-accurate field predictor allows for a fully : :
Mass moment evolution U=V+UXxQ, lLe, (3) second-order-accurate solve with ¥ = 6 = % aims for upprecedentepl reSOIu“On. of turbuleqt
o _ T2 QxD).U<V (4) reconnection on long time scales In the classical
Relativistic case. Classical case. [+ xT)-U=V, regime
Mass density (y = m). Mass density (y = m) . : . . .
p+ V-5 mvS = 0. oo+ VM =0 Conforming fluid-Maxwell A beneficial side-effect of the DEEP port is the
. . clean separation of the particle solver and the field
Momentum density (yx = mu). Momentum density (y = mv) The Implicit Moment Method may be criticized, because although it exactly maintains V- B = 0 and damps solver. This allows replacing one or the other as
OM+V -S> mvuS = cE+J x B, M+ V-SmwS =0E +J x B, V -E — o/eg, it Is not exactly conforming and does not conserve momentum and energy. This can be appropriate:
Energy density (y = mc2y). _ 1 , remedied, however, with a predictor-corrector approach, where particle distributions are tweaked to match PRrop el |
Energy density (x = ;m|v|?) evolved. slaved fluid quantities. » The FieldSolver could be replaced with an
0E+V-M=J-E ’ X . . .
’ €+ V- Z Imvv2S =J.E. Implicit Source field solver or could be iterated

Divergence constraints: consistency of fields with fluid moments to yield a fully implicit discretization.

» The ParticleSolver could be replaced with a fluid
model or a gyrokinetic or relativistic mover.

Sem"'mP"C“ methods A predictor-corrector strategy can be used to maintain the divergence constraints to machine precision

while maintaining order of accuracy for arbitrarily high order:
1. Evolve the fields with sufficient accuracy.

Semi-implicit methods are used to step over fast processes such as plasma oscillations

implicit source) and light waves (IMM) without having to step over all processes.
(imp ) ° ( ) ° P P 2. Evolve face-normal field fluxes using the evolved fields. References

3. Enforce consistency of the evolved fields with the evolved face-normal field fluxes.

The following paper describes a general framework to

Field discretizations

Enforcing V- B = 0: enforce positivity in a fluid model.
The Implicit Moment Method is an example of a semi-implicit method. For plasma Integrating magnetic field evolution over a time step and over a mesh cell face A gives [JoR012] E.A. Johnson and J.A. Rossmanith, Outflow
simulations, one of four types of discretization is generally used: L ) - positivity limiting: Part 1, framework and recipe.
Discretization must resolve... must iterate... /A"'B B /A"'B B At}éAT'E’ http://arxiv.org/abs/1212.4695
1. EXp|.ICII’[ plasma period [everything] [no |t§rat|0”] | | where E is the time-averaged value of the the electric field on the edges of the face. A predictor step can be [KumarMishra11] Harish Kumar and Siddartha Mishra,
2. Implicit Source light waves Classical: no iteration used to supply high-order-accurate values of the average value of the parallel component of E along each Entropy stable numerical schemes for two-fluid plasma
. relativistic: source iteration edge, giving a high-order-accurate update of the total magnetic flux perpendicular to each face. For any equations, J. Sci. Comput. (2012),
3. Implicit Moment (IMM) electron sound waves terate fields | order of accuracy, there is at least enough freedom to enforce that the magnetic field representation http://dx.doi.org/10.1007/s10915-011-9554-17.
4. Fully implicit [no restriction] iterate particles [everything] satisfies these constraints, and when extra freedom is available one can do so so as to minimize a norm. . . . T
The Implicit Source discretization naturally suits an asymptotic-preserving transition to Enforcing V - E — o /e: Tr;]gr:?elﬁtwrrl]neq[hdoedsc\:ilg\/evse j‘ g'seggle\:i:]%rmlgﬂg;gmﬂz implicit
relativistic MHD, since ideal relativistic MHD takes the electron charge (gyrofrequency) - - - - )
to infinity. The Implicit Moment Method naturally suits an asymptotio.preserving Integrating electric field evolution over a time step and over a mesh cell face A gives evolution equations for each species with kinetic closure in
transition to two-fluid MHD, which takes light speed to infinity. / n.E' = / n.E°+ c?At 74 7.B — At / n-J/eo conjunction with Maxwell's equations.
A A DA A [MarkidisHLRHML13] Stefano Markidis, Pierre Henri,
Explicit discretization to maintain consistency, define J using the flux of charge across face A, update the face-normal electric Giovanni Lapenta, Kjell Ronnmark, Maria Hamrin, Zakaria
field flux accordingly, and modify the electric field representation to enforce consistency. Meliani, Erwin Laure. The Fluid-Kinetic Particle-in-Cell

Solver for Plasma Simulations. Submitted to Journal of

Start with the basic equations: time-split velocity update for a symplectic method: . . .
B > 50 1 Conservation framework Computatlonal PhySICS (2013).
@tB+V2xE—O, B1 —B_1—AtV2><E 'y ) http://arxiv.org/abs/1306.10809.
OE — ¢V x B = —J/eo, E'=E " +Afc"V x B” — J"/eo, To enforce exact conservation of momentum and energy, use Maxwell’s equations to put evolution in . . . .
_ g o . [NoguchiTroZucLap07] Koichi Noguchi, Cesare Tronci,
OtXp = Vp, u* — uO - P_(u* +u?) x B'(x]) conservation form. . . . .
o, = % (E(x,) + v, x B(X,)) p p 2m, 0t P p/s Conservation of momentum Gianluca Zuccaro, and Giovanni Lapenta. Formulation of
tYp = m, P P el W2 uf - BET (X)) e | | _ o the relativistic moment implicit particle-in-cell method.
For a second-order discretization, s p)s To put momentum equation in conservation form, rewrite the source term as the sum of a time derivative Physics of Plasmas 14, 042308 (2007).
use a leapfrog discretization, and  where B! := JB? + 1B2. and a spatial derivative: http://dx.doi.org/10.1063/1.2721083.
o _ 1 2 202\ . 2
: — (0B +J xB)/co = O(E xB) + ZV(,E e B )~ V-(EE+°BB) The following article derives the implicit Maxwell scheme.
Fully implicit method where we have used all four Maxwell’s equations and a vector product rule. [RicciLapentaBrackbill02] Paolo Ricci, Giovanni Lapenta,
Conservation of energy. and J.U. Brackbill. A simplified implicit Maxwell solver.
Modity the IMM discretization by Remarks. To put energy evolution in conservation form, rewrite the source term as Journal of Computational Physics 183, 117—-141 (2002).
making al teErms mplicit: » Particle advance must be redone with —J-E/eo = 301 E* + ¢*B°) + V - (E x B), The following article derives an approximation for J using a
0B + VZ xeE=0 successive Iterations of the field solver. where we have used Maxwell’'s evolution equations and the identity Taylor expansion.
OE — quv_x 13 = —J/_€0 o » This discretization is fully symmetric in E-VxB=B:-VxE-V-(ExB). [YuB_rqckbiIIQZ_] H_.X. Vu and J.U. Brackbill. CELEST1D: an
dau, = - ( 5,E(Xp) + V) X B(xp)) | time, so by Noether’s theorem Positivity. implicit, fully k/ﬁet/c mode/_ for /oyv—frequency, |
OXp = Vp, conserves energy if iterated to Conservation form allows an explicit fluid code to enforce positivity using the framework of Outflow Positivity electr omagnetic plasma simulation. Gomputer Physics
0o+ V-J, =0, CONVeraence Limiting, as described in [JoRo12]. Here we assume that the thermal energy, defined as the gas-dynamic Communications 69 (1992) 253-276.
Os + V- Py =2 (5E +J; x B). J ' energy in the reference frame in which the gas-dynamic momentum is zero, is a concave function of the

conserved state variables (p, M, £,B, E), where £ := £ + 1(E? + ¢?B?) is defined to be the total energy and
M := M+ E x B is defined to be the total momentum.
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