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Abstract:

Fully explicit discretizations must resolve all three processes that ideal MHD assumes are instan-
taneous: oscillations, collisions, and light waves. Asymptotic-preserving discretization requires
stepping over these processes. Fully implicit discretization allows stepping not only over these
three processes but also over MHD waves, but is expensive because one must repeatedly re-push
particles with successive iterations of the implicit field solver. We therefore present semi-implicit dis-
cretizations of Maxwell’s equations that step over subsets of these processes. Discretizing implicitly
in the source term steps over plasma oscillations and collisions and allows asymptotic-preserving
agreement with (quasi-)relativistic MHD. Discretizing the flux terms of Maxwell’s equations implicitly
steps over light waves and allows asymptotic-preserving agreement with classical two-fluid MHD.

To facilitate asymptotic-preserving agreement with fluid models and conservation of physical invari-
ants, we consider kinetic fluid closure.
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kinetic-Maxwell (the “truth”)

particle evolution:

dtxp = vp,

dtup =
qp

mp
(vp × B(xp) + E(xp)) ,

γ2
p := 1 + (up/c)2,

vp := up/γp.

electromagnetic field:

∂tB +∇× E = 0,

−c−2∂tE +∇× B = µ0J,

∇ ·B = 0, c−2∇ ·E = µ0σ,

where σ(x) :=
∑

p Sp(x)qp is charge
density and J(x) :=

∑
p Sp(x)qpvp is

current density; here Sp(x) = S(x− xp) is
the shape function of particle p. To
abbreviate, we drop the particle summation
index p and the independent variable x and
write

σ :=
∑

qS (charge),

ρ :=
∑

mS (mass),

J :=
∑

vqS (current),

M :=
∑

vmS (momentum),

E :=
∑ 1

2 |v |
2mS (energy).
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Moment evolution

Fields evolve in response to charge
moments, and mass, momentum, and
energy are conserved, motivating the use
of fluid models. Kinetic closure allows
kinetic algorithms to transition efficiently
and smoothly to fluid models.

Moment definitions are of the form
∑
χS.

To derive fluid equations, we differentiate
the moment definition with respect to time
and use the basic derivatives to the right.

Charge density evolution.

∂tσ +∇ · J = 0 ,

using ∂tσ =
∑

q̇S +
∑

q∂t S,
∂t S = −v ·∇S, and ∇v = 0.

General moment evolution

∂t
∑

χS +∇ ·
∑

vχS =
∑

χ̇S,

χ̇ =
∂χ

∂u
· u̇ =

∂χ

∂v
· v̇.

Shape motion:

∂t S = −v ·∇S , (1)

where we have used the chain rule.

Lorentz force.

u̇ = q
m (E + v× B) ;

Energy change.

γ̇ = v · u̇ = q
m v ·E , (2)

because γ2 = 1 + (u/c)2, so γγ̇ = u · u̇/c2.

Velocity change.

v̇ = q
γm

(
E− vv

c2 ·E + v× B
)
,

which follows from differentiating u = γv, to
get u̇ = γ̇v + γv̇, i.e. γv̇ = u̇− vv · u̇.
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Relativistic current evolution (Ohm’s law)

Current evolution (Ohm’s law, χ = qv).

∂tJ +∇ ·P =
∑

S q2

γm

(
I− vv

c2

)
·E +

∑
S q2

γm × B ,

where P :=
∑

qvv.

Classical current evolution for species s.

∂tJs +∇ ·Ps = qs
ms

(σsE + Js × B) ,

where Ps restricts to species s.
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Mass moment evolution

Relativistic case.
Mass density (χ = m).

∂tρ+∇ ·
∑

mvS = 0.

Momentum density (χ = mu).

∂tM +∇ ·
∑

mvuS = σE + J× B ,

Energy density (χ = mc2γ).

∂tE +∇ ·M = J ·E ,

Classical case.
Mass density (χ = m)

∂tρ+∇ ·M = 0 ,

Momentum density (χ = mv)

∂tM +∇ ·
∑

mvvS = σE + J× B ,

Energy density (χ = 1
2 m|v|2)

∂tE +∇ ·
∑

1
2 mvv2S = J ·E ,
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Field discretizations

The Implicit Moment Method is an example of a semi-implicit method.
Semi-implicit methods are used to step over fast processes such as plasma
oscillations (implicit source) and light waves (IMM) without having to step over
all processes.
For plasma simulations, one of four types of discretization is generally used:

Discretization must resolve. . . must iterate. . .
1. Explicit everything (e.g. ωp) [no iteration]
2. Implicit Source light waves classical: no iteration

relativistic: source
3. Implicit Moment (IMM) electron sound waves fields
4. Fully implicit [no restriction] particles [everything]

The Implicit Source discretization naturally suits an asymptotic-preserving tran-
sition to relativistic MHD, since ideal relativistic MHD takes the electron charge
(gyrofrequency) to infinity. The Implicit Moment Method naturally suits an asymptotic-
preserving transition to two-fluid MHD, which takes light speed to infinity.
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Explicit discretization

Start with the basic equations:

∂tB +∇× E = 0,

∂tE− c2∇× B = −J/ε0,
∂txp = vp,

∂tup =
qp

mp
(E(xp) + vp × B(xp)) .

For a second-order discretization,
use a leapfrog discretization:

B does not need particle
velocities to advance, but E
does, so particle velocities up
and current J should be
staggered relative to E.
∂tX = (X 2 − X 0)/∆t
∂tY = (Y 3 − Y 1)/∆t

In the relativistic case, time-split the
velocity update for a symplectic method. In
full detail:

B2 = B0 −∆t∇× E1,

E1 = E−1 + ∆t
(
c2∇× B0 − J0/ε0

)
,

u∗p = u0
p +

qp∆t
2mpγ0

p
(u∗p + u0

p)× B1(x1
p),

u2
p = u∗p + ∆t qp

mp
E1(x1

p),

where B1 := 1
2 B0 + 1

2 B2.
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IMEX discretization (implicit source) [KumarMishra11]

Use initial values for flux terms.
and implicit values in stiff source.

Fields:

∂tB +∇× E = 0,

∂tE− c2∇× B = −J/ε0.

Particles:

∂tup =
qp

mp

(
E(xp) + vp × B(xp)

)
,

∂txp = vp,

∂tσs +∇ ·Js = 0.

Cassical current:

∂tJs +∇ ·Ps = qs
ms

(
σsE + Js × B

)
.

We designate n = 0 as initial time,
n + 1 = 1 as final time, and time
discretization as

∂tQ → (Q1 −Q0)/∆t ,

∇F → F 0,

X = X 1.

Classical case: No source term iteration
happens to be needed, because v is linear
in E. Can sum the response over all
particles to eliminate J = Ĵ + A ·E in favor
of E.

Relativistic case: Must iterate particle
velocity advance, but positions need not be
advanced, so iterative solve involves no
communication between mesh cells.
High-order accuracy: Use an IMEX
Runge-Kutta solver.
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Fully implicit method

Modify the IMM discretization by making all
terms implicit:

∂tB +∇× E = 0

∂tE− c2∇× B = −J/ε0
∂tup =

qp

mp

(
σpE(xp) + vp × B(xp)

)
,

∂txp = vp,

∂tσs +∇ ·Js = 0,

∂tJs +∇ ·P s = qs
ms

(
σsE + Js × B

)
.

Remarks.

Particle advance must be
redone with successive
iterations of the field solver.
This discretization is fully
symmetric in time, so by
Noether’s theorem
conserves energy if
iterated to convergence.
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IMM (implicit moment method – case θ = 1
2 ) [VuBrackbill92]

To linearize the Maxwell source term, modify
the fully implicit discretization by replacing
the updated charge densities and magnetic
field with explicitly evolved values.

∂t B +∇× E = 0

∂t E− c2∇× B = −J/ε0,

∂t vp =
qp
mp

(
E(x′p) + vp × B′(x′p)

)
,

∂t xp = vp,

∂tσs +∇ · Js = 0,

∂t Js +∇ ·Ps = qs
ms

(
σ
′
s E + Js × B′

)
For second-order accuracy in relevant terms,
use time averages for the implicit terms:

∂t Q → (Q1 − Q0)/∆t,

∇F → F 0
,X = 1

2 X 0 + 1
2 X 1

,

v = 1
2 v0 + 1

2 v1
,

J = 1
2 J0 + 1

2 J1
,

E = 1
2 E0 + 1

2 E1
.

Observe that in this discretization,

∂t X = 2(X− X 0)/∆t.

Divergence constraints. Eliminating B from this field
discretization and assuming mimetic operators, the field solve is
exactly equivalent to

c−2
∂t E = ( 1

2 ∆t)
(
∇2E−∇(∇ · E)

)
+
(
∇× B0 − µ0J

)
;

following [RicciLapentaBrackbill02], to ensure the divergence
constraint error is damped, substitute (∇ · E)→ (µ0c2σ), where
σ := σ0 − 1

2 ∆tJ.

High-order accuracy. Use implicit Euler discretization and plug
scheme into Runge-Kutta method.

Classical case. Can eliminate J in favor of E by putting current
evolution in the form J = Ĵ + A · E. Defining
B′ = B0 − ∆t

2 ∇× E0, B′ = B, σ′s = σ0
s − ∆t

2 ∇ · J0
s would yield

full second-order accuracy in time. IMM in literature uses
B′ = B′ = B0 and σ′s = σ0

s , Particle advance is solved
iteratively, initialized with x′p ←[ x0

p ; two iterations is enough for
second-order accuracy.

Relativistic case. Implicit source seems preferable to IMM for
the fully relativistic case for multiple reasons:

Why step over light waves but not over relativistic sound
waves or fluid speed? An implicit source time step is much
cheaper and involves no long-distance communication.

The source term system responds nonlinearly to E and is
not closed, so an implicit particle velocity advance must be
repeated with successive iterations of the field solve.
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DIRK (Diagonally Implicit Runge-Kutta) framework

An IMEX-RK (Implicit-Explicit
Runge-Kutta) scheme is designed to
solve an ODE with two forcing terms:

∂tQ(t) = FE(Q) + FI(Q),

where FE is discretized explicitly and
FI is discretized implicitly. A first-order
IMEX update would be

Q1 = Q0 + ∆t FE(Q0) + ∆t FI(Q1).

Usually this is written as an explicit
Euler update combined with an implicit
Euler update:

Q∗ = Q0 + ∆t FE(Q0),

Q1 = Q∗ + ∆t FI(Q1).

DIRK schemes are built from
compositions and linear combinations
of these two updates.

Plasma equations fit the general form

∂tq + F(q) = S(q),

where F represent the flux term. The
source-implicit discretization is of the
form

Q1 = Q0 −∆t F(Q0) + ∆t S(Q1),

which clearly fits the DIRK framework.

Can we make the Implicit Moment
Method fit the DIRK framework?
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High-order-in-time IMM via DIRK

The plasma equations are of the form

∂tQc + Fc(Qs) = 0,
∂tQs + FJ(Qs) + Fs(Qc) = Ss(Qc,Q),

where the “conserved” quantities are
Qc = (B, σ,xp) and the quantities
forced by the oscillatory source term
are Qs = (E,J,vp). The implicit
moment method discretizes this as

Q1
c =Q0

c −∆tFc(Q1
s ),

Q1
s =Q0

s −∆tFJ(Q0
s )

−∆tFs(Q1
c ) + ∆tSs(Q′c,Q

1),

where choosing Q′c = Q0
c avoids a

nonlinear system; unfortunately, this
destroys the DIRK framework, which
assumes that every term is fully
implicit or fully explicit.

A trick that restores the DIRK
framework is to duplicate the
conserved variables in the source
term that cannot be fully implicit in the
source. So we solve the system

∂tQ̃c + Fc(Qs) = 0,
∂tQc + Fc(Qs) = 0,

∂tQs + FJ(Qs) + Fs(Qc) = Ss(Q̃c,Q),

using the discretization

Q̃1
c =Q̃0

c −∆tFc(Q0
s ),

Q1
c =Q0

c −∆tFc(Q1
s ),

Q1
s =Q0

s −∆tFs(Q1
c )

−∆tFJ(Q0
s ) + ∆tSs(Q̃1

c ,Q
1);

this is a DIRK Euler update, in which
every term is fully implicit or fully
explicit.
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Implicit solve

Calculating particle and current
advance in response to the
electromagnetic field requires
solving equations of the form

U = V + U×Ω (3)

To solve for U, dot and cross both
sides with Ω to get the equations:

U ·Ω = V ·Ω,
U×Ω = V×Ω + ΩΩ ·U− |Ω|2U

= V×Ω + ΩΩ ·V− |Ω|2U.

So eliminating U×Ω in (3),

U(1 + |Ω|2) = (I−Ω× I + ΩΩ) ·V.

That is,

U =
I−Ω× I + ΩΩ

1 + |Ω|2
·V .

Equation (3) says that

(I + Ω× I) ·U = V

We thus infer that

(I + Ω× I)−1 =
I−Ω× I + ΩΩ

1 + |Ω|2
.
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IMM average current calculation (classical)

Recall classical current evolution:

∂tJs +∇ ·Ps = qs
ms

(
σ′sE + Js × B′

)
.

Discretize ∂tJs as J1
s−J0

s
∆t =

Js−J0
s

∆t/2 . So

Js = J0
s − ∆t

2 ∇ ·Ps + βs(σ
′
sE + Js × B′),

where βs := qs∆t
2ms

. This is of the form (3),

U = V + U×Ω,

where

U = Js,

V = J0
s − ∆t

2 ∇ ·Ps + βsσ
′
sE,

Ω = βsB.

Thus, the linear response of
average current to average electric
field is given by:

J = Ĵ + A ·E,
A :=

∑
sβsσ

′
sΠs,

Ĵ :=
∑

sĴs,

Ĵs := Πs ·
(
J0

s − ∆t
2 ∇ ·Ps

)
,

Πs :=
I−Ωs × I + ΩsΩs

1 + |Ωs|2
,

Ωs := βsB′,

βs := qs∆t
2ms

,

σ0
s :=

∑
p∈sS(x− x0

p)qp,

J0
s :=

∑
p∈sS(x− x0

p)qpv0
p ,

Ps :=
∑

p∈sS(x− x0
p)qpv0

pv0
p .
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IMM implicit field solver
The implicit moment method
differences Maxwell’s evolution
equations implicitly as:

∇× E +
B− B0

θ∆t
= 0,

∇× B−
E− E0

c2θ∆t
= µ0J;

where X := θX1 + (1− θ)X0, so
θ(X1 − X0) = X− X0. To
eliminate B and get an equation
implicit in E, take the curl of the
first equation:

(cθ∆t)2∇×∇×E + E

= E0 + c2
θ∆t(∇×B0−µ0J).

The implicit moment method
assumes that average current
responds linearly to average
electric field:

J = Ĵ +
χ

µ0c2θ∆t
· E,

where the “implicit
susceptibility” tensor χ is
defined so as to be unitless.

Substituting for J yields the field equation used
in [KamimuraMBLT92]:

(cθ∆t)2∇×∇×E + (E+χ · E)

= E0 + c2
θ∆t(∇×B0−µ0Ĵ).

(4)

Including the approximate identities

∇×∇×E = −∇2E +∇∇ · E,

∇ · E = µ0c2
σ, (5)

where σ := σ
0 − θ∆t∇ · J

gives a numerically overdetermined system;
we modify the method to damp diverge error by
invoking the discrete divergence contraint (5).
With these assumptions,

∇ · E = µ0c2
σ̂ −∇ · (χ · E),

where σ̂ := σ
0 − θ∆t∇ · Ĵ .

Substituting for∇×∇×E in equation (4),

(E+χ·E)−(cθ∆t)2(∇2E +∇∇·(χ·E))

= E0 +c2
θ∆t(∇×B0−µ0(Ĵ+c2∇σ̂)).

Divergence error is damped
by this equation, whereas it
neither grows nor decays for
(4).

Having found E,

B1 = B0 + ∆t∇× E,

E1 = θ
−1E + (1−θ−1)E0

.

Observe that this magnetic
field update maintains the
condition that the magnetic
field is a discrete curl up to
machine precision
independent of whether
mimetic operators are used.

Accurate closure.

This scheme is second-order
accurate for θ = 1/2 and
first-order accurate for
1
2 < θ ≤ 1; it is unstable for
θ < 1/2.

Needed information:

χ := (µ0c2θ∆t) A

Ĵ, σ0

B0, E0
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Implicit particle mover (classical)

Particle position and velocity are
differenced as

x1
p = x0

p + vp∆t ,

vp := 1
2 v1

p + 1
2 v0

p ,

v1
p = v0

p + 2βs

(
Eθp + vp × Bϑp

)
,

where s is the species of particle p, ϑ
might equal θ or 0, and βs := qs∆t

2ms
.

Choosing Bϑp := Bϑ(x0
p) yields an

explicit particle advance. Choosing
Bϑp := Bϑ(xp) and Eθp := Eθ(xp),
where xp := 1

2 x1
p + 1

2 x0
p , defines an

implicit particle advance. Use two
iterations beginning with the explicit
advance for second-order accuracy.

Eliminating v1
p in favor of vp,

vp = v0
p + βs

(
Eθp + vp × Bϑp

)
.

This is of the form

U = V + U×Ω,

where

U = vp,

V = v0
p + βsEθp ,

Ω = βsBϑp .

Thus,

vp = Πϑp · (v0
p + βsEθp ),

Πϑp :=
I−Ωp × I + ΩpΩp

1 + |Ωp|2
,

Ωp := βsBϑp ,

βs :=
qp∆t
2mp

.

Observe that |Ωp|
is half the
gyrofrequency for
particle p. Note
that ϑ ∈ {0, θ} is
chosen based on
whether the
updated magnetic
field is already
known. A
first-order-accurate
field predictor
allows for a fully
second-order-
accurate solve with
ϑ = θ = 1

2 .
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Implicit particle mover (relativistic) [NoguchiTroZucLap07]

Advance the position and velocity
of each particle p via

u1 = u0 + 2βs

(
Eθp + v× Bϑp

)
,

(6)
v := u/γ,

x1
p = x0

p + v∆t,

where u := 1
2 u1 + 1

2 u0, u = up

(etc.), γ := 1
2γ

1 + 1
2γ

0, and
βs := qs∆t

2ms
; choosing

Bϑp := Bϑ(x0
p ) yields an explicit

advance, and choosing
Bϑp := Bϑ(xp) and Eθp := Eθ(xp)

defines an implicit advance, where

xp := 1
2 x1

p + 1
2 x0

p .

Use 2 iterations beginning with the
explicit advance for second-order
accuracy. Since u1 = 2u− u0,

u = u0 + βs(Eθp + v× γ−1Bϑp ).

This is of the form

U = V + U×Ω, (7)

where U = u, V = u0 + βsEθp , and,
Ω = γ−1βsBϑp is half the gyrofrequency
vector. Thus (restoring index p),

up = Πϑp · (u0
p + βsE

θ
p ),

Πϑp :=
I−Ωp × I + ΩpΩp

1 + |Ωp|2
,

Ωp :=
βp

γp
Bϑp ,

βs := qs∆t
2ms

,

This system would be an explicit solution if
xp and γp were known.
In the classical case, γp = 1.
In the relativistic case,
γ2 = 1 + (u/c)2,
so γdγ = u · du/c2, i.e.,
dγ = v · du/c2.

Substituting into (6),

γp = γ
0
p + βpEθp · v′/c2

,

where this equality holds if
v′ = vp. The initialization
v′ ←[ v0

p yields an iterative
solver. The relativistic implicit
moment method is based on
this first iteration.

Note that ϑ ∈ {0, θ} is
chosen based on whether the
updated magnetic field is
already known. A
first-order-accurate field
predictor allows for a fully
second-order-accurate solve
with ϑ = θ = 1

2 .
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Divergence constraints: consistency of fields with fluid moments

A predictor-corrector strategy can be used to maintain the divergence constraints to machine precision while
maintaining order of accuracy for arbitrarily high order:

1 Evolve the fields with sufficient accuracy.

2 Evolve face-normal field fluxes using the evolved fields.

3 Enforce consistency of the evolved fields with the evolved face-normal field fluxes.

Enforcing∇ · B = 0:

Integrating magnetic field evolution over a time step and over a mesh cell face A gives∫
A

n̂ · B1 =

∫
A

n̂ · B0 −∆t
(∮

∂A
τ̂ · E

)
,

where E is the time-averaged value of the the electric field on the edges of the face. A predictor step can be used
to supply high-order-accurate values of the average value of the parallel component of E along each edge, giving
a high-order-accurate update of the total magnetic flux perpendicular to each face. For any order of accuracy,
there is at least enough freedom to enforce that the magnetic field representation satisfies these constraints, and
when extra freedom is available one can do so so as to minimize a norm.

Enforcing∇ · E = σ/ε0:

Integrating electric field evolution over a time step and over a mesh cell face A gives∫
A

n̂ · E1 =

∫
A

n̂ · E0 + c2∆t
(∮

∂A
τ̂ · B

)
−∆t

∫
A

n̂ · J/ε0;

to maintain consistency, define J using the flux of charge across face A, update the face-normal electric field flux
accordingly, and modify the electric field representation to enforce consistency.
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Conservation framework

To enforce exact conservation of momentum and energy, use Maxwell’s equations to put evolution
in conservation form.

Conservation of momentum.
To put momentum equation in conservation form, rewrite the source term as the sum of a time
derivative and a spatial derivative:

−(σE + J× B)/ε0 = ∂t (E× B) + 1
2∇(E2 + c2B2)−∇ · (EE + c2BB),

where we have used all four Maxwell’s equations and a vector product rule.

Conservation of energy.
To put energy evolution in conservation form, rewrite the source term as

−J ·E/ε0 = 1
2∂t (E2 + c2B2) +∇ · (E× B),

where we have used Maxwell’s evolution equations and the identity
E ·∇× B = B ·∇× E−∇ · (E× B).

Positivity.

Conservation form allows an explicit fluid code to enforce positivity using the framework of Outflow
Positivity Limiting, as described in [JoRo12]. Here we assume that the thermal energy, defined as
the gas-dynamic energy in the reference frame in which the gas-dynamic momentum is zero, is a
concave function of the conserved state variables (ρ, M̃, Ẽ,B,E), where Ẽ := E + 1

2 (E2 + c2B2) is
defined to be the total energy and M̃ := M + E× B is defined to be the total momentum.
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Particle representation

To use kinetic closure, we need (1) a means of
representing the particle distribution and (2) a means
to approximate closing moments at cell boundaries.

Blobs. Traditional PIC approximates the distribution
of particles with computational particles that are rigid
blobs of charge. This restricts agreement of PIC with
the Vlasov equation to low-order accuracy in phase
space. In a limit involving an increasing number of
computational particles per mesh cell, it would still be
possible to get higher-order accuracy (of fluid
moments) in physical space; this would need
integration of flux values along faces. Traditionally,
one gives up on higher-order accuracy, simply
computing the average value of closing moments in
each cell and then interpolating.

Samples. In higher-order PIC (HOPIC), each particle
carries a value of phase-space density that is
convected with the particle. High-order-accurate
evolution can be achieved by interpolating these
values at quadrature points.

Samples at random points. The approach to HOPIC
taken by [EdwardsBridson11] is to create particles at
randomly chosen points and sample the
representation with a least-squares polynomial fit.
Such a fit requires solving a linear system (10 by 10
in the classical case) at each sampled point.

Samples at fixed points. An alternative approach to
HOPIC advocated here is to resample the particles
with every time step at predetermined points so that
no resampling is needed to sum closing moments. If
particles live at predetermined points, then the matrix
of the linear system that must be solved to interpolate
distribution values can be inverted once for all at the
beginning of the simulation and stored. Similarly, the
contribution of each particle to the closing moments is
its charge or mass times a quantity that can be
precomputed at startup. Thus, computation of each
closing moment is simply a weighted sum over all
particles, and interpolation simply multiplies particle
data by a precomputed weighting matrix.

To ensure that particles live at predetermined points
when resampling particles, one can resample with
each time step by predetermining the locations of the
resampled particles at the updated time step and
tracking them backwards in time to determine
sampling locations. This needs an inital estimate of
the updated electromagnetic fields. Alternating
iteratively between field and particle updates
converges to a self-consistent fully implicit update.

In the relativistic case, the value of γ−1 needs to be
computed once for each particle. Fortunately,
accelerators such as the MIC and GPU implement the
square root and multiplicative inverse operations very
efficiently.
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Consistency of particle distribution with positivity and mass moments

Positivity of distribution.

To avoid instability, it is desirable for moments to be
calculated with a positive distribution. We can
guarantee this in HOPIC if sampled values are always
positive. An easy way to ensure this is for each
particle to carry the logarithm of the distribution.
Calculating moments requires exponentiating each
sampled distribution value. Fortunately,
exponentiation is cheap on the MIC and the GPU.

Consistency with mass moments.

Evolved field moments must not drift without limit from
the moments of the distribution with successive
updates. To enforce consistency, one can calculate
values of the evolved moments from the particles and
then modify the particle data to enforce consistency.

Mass consistency.

Assume that the evolved mass ρ is positive. To make
the mass density of the particles consistent with the
evolved mass density, simply rescale the phase
space density of the particles appropriately at each
point. If the logarithm of particle density is being
represented, then at each point in physical space
where particles live one simply shifts the logarithmic
particle values by a constant.

Momentum consistency.

To enforce momentum consistency, one can apply an
appropriate constant shift to all particle velocities at
each point in physical space. One simply reinterprets
particle velocities when sampling particle values by
applying this shift.

In the relativistic case, determining the appropriate
shift to enforce exact consistency would require a
nonlinear (iterative) solve, but an approximate solve
using a single iteration could be used to damp
inconsistency and prevent its growth. An alternative is
to simply define particle velocities relative to the
evolved fluid velocity, i.e., to represent thermal
velocities.

Energy consistency.

Assume that the evolved energy density E is positive.
To enforce energy consistency, one can at each point
in physical space apply an appropriate constant
rescaling to the thermal velocity. In the classical case,
this rescaling factor is simply the square root of the
ratio of evolved energy to calculated energy. In the
relativistic case, determining the appropriate scaling
to enforce exact consistency would require a
nonlinear (iterative) solve, but an approximate solve
using a single iteration could be used to damp
inconsistency and prevent its growth.
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Consistency of particle distribution with charge (and mass) moments

In addition to enforcing consistency of the
evolved electric field with the evolved charge
density, one also needs to enforce consistency
of the evolved charge density with the evolved
particle distribution.

To enforce agreement both with mass density
and with charge density, one can rescale the
positive charges with a factor α+ and the neg-
ative charges with a different factor α−. Indeed,
the linear system[

ρ+ ρ−

σ+ σ−

]
·
(
α+

α−

)
=

(
ρ
σ

)

has positive determinant if charges of both
species are present in all mesh cells; ensuring
this condition involves some type of particle re-
sampling (of which particle splitting is one exam-
ple).

If particles are (e.g. rigid) blobs (as opposed to
distribution samples), then one can alternatively
track the flow of charge across cell boundaries
to determine exact charge flux.
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DEEP: Cluster attached to Booster

The architecture of DEEP consists of a 128-node, 21.3 teraflop Cluster of 16-core 2.7 GHz Intel
Xeon processors connected to an infiniband network and will be augmented with a a 512-node, 590
teraflop Booster each of whose nodes is a 1.2 GHz 60-core Xeon Phi MIC (Many Integrated Core)
accelerator.

The DEEP architecture was developed with the idea of accelerating codes that run on the cluster
by making it easy to offload computationally intensive parts of the code to the booster while leaving
complex, communication-intensive code on the cluster.
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FieldSolver on Cluster, ParticleSolver on Booster

iPic3D implements the implicit moment method and consists of a cycle of three steps:
1 (ParticleSolver): Sum implicit moments Ĵ0 and σ0

s of particles.
Communicate implicit moments to FieldSolver.

2 (FieldSolver): Advance the electromagnetic field, E0 → E1, using implicit moments.
Communicate fields to ParticleSolver.

3 (ParticleSolver): Advance the particles using the already advanced fields.

Due to its implicit nature, the FieldSolver makes many all-to-all communications and naturally is
best suited to the Cluster.

In contrast, since particles can be pushed in parallel, the ParticleSolver only needs to communicate
particles to neighboring processors in the torus.

To increase resolution and demonstrate converged solutions, the number of particles per mesh cell
must increase. Therefore, in the high resolution limit, computing particles increasingly dominates
PIC codes. The port of iPic3D to DEEP aims for unprecedented resolution of turbulent reconnection
on long time scales in the classical regime.

A beneficial side-effect of the DEEP port is the clean separation of the particle solver and the field
solver. This allows replacing one or the other as appropriate:

The FieldSolver could be replaced with an IMEX field solver or could be iterated to yield a
fully implicit discretization.

The ParticleSolver could be replaced with a fluid model or a gyrokinetic or relativistic mover.
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