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Outline

¬ Problem: space weather and fast reconnection

­ Physical model: two-fluid plasma.

® Computations: Riemann problem.

¯ Future work: fast GEM solver.
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Problem: Space weather

Broad goal: to model space weather.

• Earth bombarded with solar wind.

¬ charged: mostly protons or electrons.

­ sparse: 5-10 protons (or electrons) per

cm3.

® fast-moving: proton velocities of 200–

800 km/s.

• Solar wind varies dramatically.

• Solar storms cause geomagnetic storms.
Coronal Mass Ejection.
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Problem: Space weather: Human effects.

How does a geomagnetic storm affect
us?

• Produces polar auroras.

• Deflects compass readings.

• Generates large ground currents, affecting

geologic exploration.

• Damages transformers in power grids.

(HydroQuébec, 1989)

• Disrupts satellite communications and

navigation systems, including GPS.

• Threatens spacecraft and astronauts.
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Problem: Space plasma.

Solar wind is a form of plasma.

• Plasma is gas with enough charged particles so that electromagnetism affects its motion.

• Space plasmas develop magnetic fields. Charged particles spiral around magnetic field

lines. So particles are effectively constrained to move along magnetic field lines, and

magnetic field lines are bound to the plasma.

• Space plasmas are approximately collisionless: particles interact mostly with the overall

electromagnetic field rather than by collisions with individual particles.
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Problem: Earth’s magnetosphere

How does the solar wind interact with
Earth’s magnetic field?

• The magnetosphere is the region around

Earth whose magnetic field lines pass

through Earth. Outside this region is the

Interplanetary Magnetic Field (IMF).

• The magnetopause is the boundary

between the magnetosphere and the IMF.

• Since space plasma is tightly
constrained to flow along magnetic field
lines, Earth’s magnetosphere largely
shields us from the solar wind (and is

distorted in the process).

• Solar wind is decelerated at the bow shock.

• Solar wind is generally deflected around the

magnetopause.

• But reconnection of magnetic field lines

allows plasma to cross the magnetopause

into Earth’s magnetosphere.

(cross-section along ecliptic)

(cross-section along polar axis)
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Problem: Space weather: Magnetosphere.
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Problem: Space weather: Magnetosphere.

The red circle indicates the position of the four satellites of the European Space Agency’s Cluster fleet.

Credits: ESA
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Problem: Magnetic reconnection.

Solar wind reconnecting at magnetopause

14-Aug-2007 21:03:37 UT
Schematic of Reconnection

Date: 03 Feb 2005
Satellite: Cluster

Depicts: Reconnecting field lines

Copyright: N. Tsyganenko, USRA/GSFC/NASA
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Problem: Magnetic reconnection.

What is magnetic reconnection?

• Magnetic reconnection is reconfiguration of

the topology of magnetic field lines.

• How do field lines reconnect? (2D

scenario).

¬ Adjacent antiparallel lines approach.

­ The lines form an X and cancel, breaking

them in two.

® The adjacent broken halves join.

¯ These new sharply angled lines form a

“slingshot”; the region of canceled field

propagates rapidly.

° This rapid cancellation of magnetic field

explosively releases the energy stored in

the magnetic field.
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Problem: Fast magnetic reconnection.

Specific goal: to develop a fast, shock-

capturing algorithm that resolves fast
magnetic reconnection.

¬ Solar wind produces strong shocks.

­ Fast magnetic reconnection is critical to

modeling space weather events.

(a) Fast reconnection seems to make violent

solar storms possible.

(b) Reconnection is the primary mechanism

that allows gusts of solar wind

to penetrate the magnetosphere and

generate geomagnetic storms.

® Models that resolve fast reconnection (and

by implication fast waves) tend to be

computationally expensive due to the need

for a short time step.

¯ Reconnection typically is restricted to

isolated regions of space, and elsewhere

cheaper models that don’t resolve fast

waves are accurate enough.

° Our challenge: Can we selectively resolve
fast waves only in regions where
magnetic reconnection is occurring,
and elsewhere use a coarser time step?
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Plasma models

We seek the simplest, most computationally inexpensive model that exhibits fast

reconnection.

What models are available?

¬ Two-fluid models regard the plasma as an electron fluid and an ion fluid which occupy the

same space.

­ The collisionless two-fluid model assumes that the two fluids pass through one another freely

and only affect one another indirectly by means of their interaction with the electromagnetic

field.

® One-fluid models essentially regard the plasma as a charge-neutral fluid which conducts

electricity.
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Choice of plasma model.

Why did we choose the collisionless two-fluid model?

Plasma models: accuracy versus expense.

¬ Collisionless Two-fluid model. (Admits fast reconnection.)

• Most accurate.

• Expensive because of light waves.

­ One-fluid models, i.e.

Magnetohydrodynamics (MHD).

(a) Hall MHD. (Admits fast reconnection.)

(b) Resistive MHD. (Reconnection converges to the correct steady state, but too slowly by

orders of magnitude.)

(c) Ideal MHD. (Does not admit reconnection.)

We chose to focus on the collisionless two-fluid model rather than Hall MHD because of

its simplicity.

We compare our computations with ideal MHD, which should be sufficiently accurate in

the majority of regions where reconnection and strong shocks are absent.
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Model equations: Conservation law framework

We express our equations as conservation

(balance) laws.

q
t
+∇ · f(q) = s(q).

• q is the state, i.e., a tuple of conserved

“stuff”,

• f is the flux, i.e., the rate at which each

type of stuff flows, and

• s is the source term, i.e., the rate at which

each kind of stuff is produced or destroyed.

If we partition space into discrete cells,

partition time into discrete time intervals, and

integrate this equation over each cell C and

time interval [tn, tn+1], this equation says that

the change in the amount of stuff in a cell over

one time step equals the net amount that

flowed into the cell across the cell interfaces

plus the net amount of stuff that was produced

inside the cell.Z
C

q(tn+1) =

Z
C

q(tn)−
Z
C

n · f +

Z
C

s
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Model equations: Two-fluid model

The two-fluid model consists of gas dynamics for each of the two fluids, coupled to Maxwell’s

equations by means of source terms consisting of the Lorentz force, the charge density, and the

current and displacement currents. The gas dynamics equations are

∂t

24 ρs
ρsvs
Es

35
| {z }

conserved

+∇ ·

24 ρsvs
ρsvsvs + ps I
vs
`
Es + ps

´
35

| {z }
hyperbolic flux

=

264 0
qs
ms
ρs(E + vs × B)
qs
ms
ρsvs · E

375
| {z }
electromagnetic source

,

where s = i (ion) or e (electron), qs
ms

is charge-to-mass ratio, ρ is mass density, v is fluid

velocity, E is energy, p is pressure, and E and B are electric and magnetic field, We assume

the ideal gas constitutive relations Es = ps
γs−1 + 1

2ρsv
2
s . The charge density and the current

density of each species are given by the relations σs = qs
ms
ρs and Js = qs

ms
ρsvs.

Maxwell’s equations for the evolution of the electromagnetic field are

∂t

»
cB
E

–
+ c∇×

»
E
−cB

–
=

»
0

−J/ε0

–
| {z }

evolution equations

and ∇ ·
»
cB
E

–
=

»
0

σ/ε0

–
,| {z }

constraint equations

where B = magnetic field, E = electric field, σ = σi + σe = net charge density, J = Ji + Je
= net current, c = light speed, and ε0 = permittivity of free space.
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Model equations: Nondimensionalized two-fluid model

We nondimensionalized the equations by choosing typical values for an ion. We get:

∂bt

266666664

bρibρebρibvibρebvebEibEe

377777775
+ c∇·

266666664

bρibvibρebvebρibvibvi + bpi Ibρebvebve + bpe Ibvi`bEi + bpi´bve`bEe + bpe´

377777775
=

1brL

266666664

0

0bρi(bE + bvi × bB)

−mi
me
bρe(bE + bve × bB)bρibvi · bE
−mi
me
bρebve · bE

377777775
,

∂bt
"bcbBbE

#
+ bcd∇×" bE

−bcbB
#

=

»
0

−bJ/ε
–
, and b∇ · "bcbBbE

#
=

»
0bσ/ε
–
.

Here rL :=
m0v0
q0B0

is the Larmor radius, the

radius of curvature of the circular motion

of a typical ion moving perpendicular to a

characteristic magnetic field, ε := brLcλD2

plays the role of permittivity, and cλD is the

ratio of the Debye length to the Larmor radius.

The Debye length,

r
ε0m0v

2
0

n0q
2
0

, is the distance

scale over which electrons screen out electric

fields in plasmas (i.e. the distance scale over

which significant charge separation can occur).

n0 is a typical value for number density.

16



Model equations: Ideal MHD

If we consider an asymptotic limit of

the two-fluid equations as the Larmor radius

rL goes to zero, we obtain the following

assumptions used in deriving the MHD

equations:

¬ σ ≈ 0 (quasineutrality)

­ ∂tE ≈ 0 (Ampere’s law)

® E ≈ B× v (Ohm’s law)

¯ E2 ≈ 0 (small E)

The work we report compares the two-fluid

plasma model with ideal MHD as we take the

Larmor radius rL to zero. The full system of

ideal MHD equations is

∂

∂t

26664
ρ

ρv
Ẽ
B

37775+∇ ·

26664
ρv

ρvv + p̃ I− 1
µ0

BB
v
`
Ẽ + p̃

´
− 1

µ0
BB · v

vB− Bv

37775
| {z }

hyperbolic flux

= 0

and the physical constraint ∇ ·B = 0, where

ρ is the mass density, v is the fluid velocity

field, Ẽ := E + 1
2µ0
B2 is the total energy

(gas-dynamic energy plus magnetic energy), B
is the magnetic field, and p̃ := p + 1

2µ0
B2 is

the total pressure (gas-dynamic pressure plus

magnetic pressure). The gas-dynamic pressure

is p = (γ − 1)(E − 1
2ρv

2), where γ = 5
3 is

the ratio of specific heats.
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Numerical Method: Finite Volume.

We used an explicit, finite-volume, shock-capturing numerical method.

• Implemented in Randall LeVeque’s CLAWPACK (Conservation LAW PACKage).

• Second-order accurate for smooth data, first-order accurate for shocks.

• For 2-fluid, used Strang time-splitting to handle source term.
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Numerical Method: Choice of problem.

We computed solutions to a 1-dimensional

Riemann problem.

For MHD the initial conditions to the left
and right of zero were:

26666666666664
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0

377777777775

The equivalent initial conditions for the
two-fluid model are:

266666666666666666666666666666664

ρi
v1i
v2i
v3i
pi
ρe

v1e
v2e
v3e
pe

B1

B2

B3

E1

E2

E3

377777777777777777777777777777775
left

=

26666666666666666666666666664

1.0
0
0
0

0.5

1.0memi
0
0
0

0.5
0.75
1.0
0
0
0
0

37777777777777777777777777775

and

266666666666666666666666666666664

ρi
v1i
v2i
v3i
pi
ρe

v1e
v2e
v3e
pe

B1

B2

B3

E1

E2

E3

377777777777777777777777777777775
right

=

26666666666666666666666666664

0.125
0
0
0

0.05

0.125memi
0
0
0

0.05
0.75
−1.0

0
0
0
0

37777777777777777777777777775

19



Numerical Method: Results.

We plotted ion density at nondimensionalized time t = 0.1 for a range of values of the

nondimensionalized Larmor radius: rL = ∞ (an Euler gas dynamics computation), rL = 10,

1, 0.1, 0.01, 0.003, (two-fluid computations) and rL = 0 (an ideal Magnetohydrodynamics

computation).

The initial ion density is piecewise constant with a single discontinuity at zero.
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Numerical Method: Results.

When the Larmor radius is large (rL = 10), the electromagnetic effects are weak and the

ions behave like an ideal gas. (At rL = 100, 2-fluid is indistinguishable from Euler.)
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Numerical Method: Results.

As we decrease the Larmor radius, the solution begins to transition away from gas dynamics

(and eventually toward MHD).
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Numerical Method: Results.

As the Larmor radius becomes smaller, higher-frequency oscillations begin to set in.
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Numerical Method: Results.

As the Larmor radius becomes even smaller, the frequency of the oscillations increases and

the solution begins to weakly approach the MHD solution.
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Numerical Method: Results.

Convergence to MHD is suggested but far from confirmed. Unfortunately, computational

expense increases with decreasing Larmor radius.

25



Future work.

¬ Accelerate solver by resolving fast waves and high frequencies only where needed (using

techniques such as adaptive mesh refinement and implicit methods), and compare with Hall

MHD.

­ Extend solver to 2-dimensions.

® Obtain a fast solution to the Geospace Environmental Modeling (GEM) reconnection

challenge problem.

¯ Extend solver to special and general relativistic flows.
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