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Fly, we discussed characteristics and
the conceptual model of the moun-
tain wave, mountain wave forecasting,
and implications of flight in and around
the phenomenon. To close out the topic,
a little discussion on the complexity of
numerical forecasting is appropriate.
When the subject of mountain waves is
discussed very often someone eventu-
ally asks, “Why does the mountain wave
form?” A complete explanation of why
the wave forms and a numerical descrip-
tion requires advanced mathematics and
physics. This is the reason for the vague
answer that is often given regarding the
appropriate question “why?” from in-
quisitive aviators.
'The complexity of a comprehensive nu-
merical description for a mountain wave
cannot be overstated. In keeping with the

In previous renditions of Weather to

meteorology profession’s reputation of
subterfuge — along with the complexity
of atmospheric interactions that lead to
the development of the mountain or lee
wave — I use this month’s installment of
Weather to Fly to just give just a taste of
the theory. I will point out a few of the as-
sumptions, and numerical equation terms
and variables that only begin to describe
the atmospheric motion that results in
the development of the mountain wave.
I am also including a more extensive,
yet still abridged, reference section for
those who wish to see examples of wave
research continually underway. Personal
recommendations for further informa-
tion about mountain wave would be the
“The Mountain Wave Project” [7] and
any research conducted by the University
Corporation for Atmospheric Research

(UCAR) and National Center for Atmo-
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spheric Research (NCAR).

In looking at the conceptual model
of the mountain wave, the definition of
the (vertical) wavelength is the distance
between the crests of the waves. Reliably
this is the distance between the first and
second waves (not the distance from the
disturbing terrain feature to the first wave
crest). The amplitude of a wave is the
measure of the air’s vertical change in its
oscillation (See Diagram #1: “Mountain
Wave Conceptual Model”).

Courtesy of Holton [4], a mountain
or lee wave develops when air is forced
to flow over a mountain under statically
stable conditions. Individual air parcels
are displaced from a level where they
were at an equilibrium level. As a result
of the displacement by terrain, the air
parcels undergo buoyancy oscillations as
they move downstream of the mountain.
An internal gravity wave system is excit-
ed in the lee of the mountain. A gravity
wave [5] is defined as a wave disturbance
in which buoyancy (or reduced gravity)
acts as a restoring force on parcels of

Hydrostatic Equation [5]

Underscoring just some of the as-
sumptions and yet considerations
that constitutes the complexity of
attempting to describe the motion of
the atmosphere in regard to moun-
tain waves, this meteorological for-
mula derivation represents the verti-
cal component of the vector equation
of motion. All Coriolis, earth curva-
ture, frictional, and vertical accelera-
tion terms are considered negligible
compared with those involving the
vertical pressure force and the force
of gravity.

Thus op/dz=-pg

where p is the pressure, p is the den-
sity, g the acceleration of gravity, and
z the geometric height. For cyclonic-
scale motions the error committed in
applying the hydrostatic equation to
the atmosphere is less than 0.01%.

NOTE: Strong vertical accelera-
tions in thunderstorms and moun-
tain waves (editor’s emphasis) may
be 1% of gravity or more in extreme
situations.
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air displaced from hydrostatic equilib-
rium. Hydrostatic equilibrium [5] is the
state of a fluid (the air) with consistent
horizontal surfaces of constant pressure
and constant mass (or density). In this
equilibrium, a balance exists between the
force of gravity acting on the mass of air
and the pressure force (Note: Remember
pressure changes with altitude height
gain or loss). With assumptions, the re-
lationship between the pressure and any
geometric height in the atmosphere is
defined by the Hydrostatic Equation (See
Text Box #1: Hydrostatic Equation [5]).

The first term that must be addressed
by numerical modelers of the atmosphere
is stability, and in the mountain wave
case, static stability. Static Stability [5],
also called hydrostatic stability or vertical
stability, is the ability of air at rest to be-
come either turbulent or laminar due to
the effects of buoyancy. A fluid - the air
- tending to become or remain turbulent
is said to be statically unstable; a fluid
tending to become or remain laminar is
statically stable. A fluid on the borderline
between the previous two (which might
remain laminar or turbulent depending
on its history) is statically neutral. The
most prevalent type of the mountain
wave, commonly known as a “trapped
wave,” typically requires static stability.
With the aforementioned basic concepts
and definitions, meteorologists begin to
numerically describe the atmosphere’s
stability.

The concept of static stability can also
be applied to air not at rest by consider-

Wavelength Relationship [4]

A =[S/u—1/4H"?= 8" /u

where:

L = vertical wavelength of the
gravity wave;

H = a constant scale height

S = stability; and,

u = zonal wind speed.

By derivations of numerical equa-
tions, this relationship shows that
the vertical wavelength of the grav-
ity wave excited by zonal flow over
a mountain is proportional to the

zonal wind speed _and inversely pro-
portional to the square root of the

stability.

ing only the buoyant effects and neglect-
ing all other shear and inertial effects of
motion. Shear and inertial effects of motion
result in dynamic stability contributions,
or the measure of the ability of the air to
resist or recover from finite perturbations
of what was a steady state condition.
However, if any of these other dynamic
stability effects is indicative that the flow
is dynamically unstable, then the flow
will become turbulent regardless of the
static stability. In other words, turbulence
has a physical priority in the atmosphere
when considering all possible measures
of air flow stability (e.g., the air is turbu-
lent if any one or more of static, dynamic,
inertial, etc., effects indicates instability).
Turbulence that forms in statically unsta-
ble air will act to reduce or eliminate the
instability that caused it by moving less
dense air up in height and more dense
air down thus creating a neutrally buoy-
ant mixture. Thus, turbulence will tend to
decay with time as static instabilities are
eliminated in the mixing (unless some
outside forcing such as heating of the
bottom of a layer of air by contact with
the warm ground during a sunny day)
continually acts to destabilize the air.

By mathematical derivations and as-
sumptions (See Text Box #2: Wavelength
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Relationship), the vertical wavelength of
the gravity wave excited by zonal flow
(westerly flow) over a mountain is pro-
portional to the zonal wind speed, and
inversely proportional to the square root of
the stability [4]. Mountain lee waves are
stationary with respect to the ground.
The initial energy source for disturb-
ing the air flow is the ground and this
disturbing energy must be transported
vertically. At the same time, the phase
velocity relative to the mean wind flow
has a downward component. In the
mathematical derivation of the wave-
length, the constant phase velocity of the
wave shows a westward (or upstream)
tilt of the wave crest with height. When
viewed within a coordinate system mov-
ing at the speed of the mean zonal wind,
constant phase lines of lee waves set up
by westerly flow appear to progress up-
stream toward the west (the direction
from that the wind is coming from).

As mentioned, early wave modeling
work proceeded with a series of assump-
tions to keep the Lee-Wave Equation
[8] simplified. It was assumed that the
amplitude of the waves is relatively small
compared to the wavelength (wave-
lengths ~6 miles or 10 km), and that the
effect of the earth’s rotation could be dis-

| Turbulence (TKE)
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Project Mendoza 12 Oct 2006 Flight #1 AUl

Graphical rendition of vertical wind and turbulence (Turbulent Kinetic Energy) observed in wawve.
Rendition courtesy of “The Mountain Wave Project” from data gathered during the Terrain-Induced Ro-
tor Experiment in 2006 in the lee of the Southern Sierra Nevada over the Owens Valley.
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regarded. The air motion was described
in a coordinate system where the wind
was relatively undisturbed, and along an
axis perpendicular to a mountain ridge
considered to have an infinite extension.
Other assumptions were that the motion
would be described as non-viscous, lami-
nar, and isentropic. Isentropic implies that
potential temperature is constant with
respect to space, in this regard [4].

Turbulent flow is not the type of air
movement desired for soaring wave
flight. As such, the “trapped wave” regime
of air that is relatively stable provides for
the laminar flow. Numerical work must
account for the effects of both variation
of wind and stability with height. Early
work by R.S.Scorer and the subsequent
development of an older wave forecast
tool, the Scorer Parameter (See Text Box
#3: Scorer Parameter [6]), underscores
the importance of zemperature, tempera-
ture lapse rates, and wind shear in the gen-
eration of mountain wave laminar flow.
As observed, some degree of stability is
desired at lower atmospheric levels with
increasing destabilization aloft that often
approaches the dry adiabatic lapse rate.

What else makes mountain wave
numerical description complex? The basic
structure of the mountain wave is initially
determined by the size and shape of the
mountain. Downwind terrain can inter-
fere with the wave. Constructive interfer-
ence occurs when the downwind terrain
teatures align favorably within the wave-
length to support the updraft of the wave;
or destructive interference occurs when
the downwind terrain is out of phase with
the wavelength. Terrain shape and size
must fit in with the functions of the ver-
tical profiles of temperature, wind speed,
and moisture in the impinging flow [3]
for wave development. Linear theory fits
well for the assumption that mountain
waves are generated by terrain relatively
small compared to the wavelength. If the
aforementioned assumption is not the
case, then nonlinear dynamics play a sig-
nificantly larger impact on the low-level
wave field over the lee slope.

The role of stability as a function of
temperature and temperature changes
has been discussed. Wind shear is also
a key term in the development of the
mountain wave. If numerical simula-

tions change only the vertical wind
shear, then the following wave develop-
ment occurs [6]:

* If a wave structure develops that oc-
curs with weak wind shear (change in
wind speed), on the order of 10 meters/
second or 20 knots from mountaintop to
the Tropopause (the top of the lowest at-
mospheric level extending upward from
the surface to around 30,000 feet MSL
at mid-latitudes in the winter), the waves
are primarily in a vertically propagating
mode with wave response mostly higher
than the mountain ridge. Only minimal
disturbed flow is noted downwind of the
mountain;

* Moderate wind shear with winds in-
creasing 20m/s or 40kts leads to lee
waves occurring farther downwind with
longer wavelengths aloft. The primary
wave has a very pronounced upwind
tilt. The mountain wave system then has
both high-level vertically propagating
and low-level trapped-wave modes. This
is an optimum wave condition for pilots
looking for maximum altitude or altitude
gain; and,

* Strong wind shear through the Tropo-
pause, winds increasing 45m/s or 90kts,
results in wave energy that is largely
trapped in waves in the lower tropo-
sphere and minimal disturbed flow at
higher altitudes. Wave updrafts develop
farther downwind of the mountains.

One other flow structure can develop
from terrain influence that is differ-
ent from the trapped-wave considered
above. This type of mountain-wave is re-
terred to as an atmospheric jump (or hy-
draulic jump as studied in engineering
and fluid-dynamics). The atmospheric
jump is analogous to a shock wave in a
compressible fluid. The jump develops
one large wave oscillation downwind of
the lee slope of a mountain with no res-
onant waves. Rotor or turbulence forms
not only under the wave crest, but also
occurs downwind as well. Atmospher-
ic jumps are much less frequent than
trapped-wave systems. They tend to fa-
vor development with the presence of
bigh, steep lee slopes, strong near-mountain
top inversions, and relatively weak verti-
cal shear environments [6].

In summary, accurate and comprehen-
sive numerical descriptions and modeling
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of a mountain wave (and subsequently
the ability to numerically forecast) is
quite complex for all aspects of wave de-
velopment, especially if one is striving
for 3-dimensional representation of the
wave. The understanding of the complex
interactions within the atmosphere has
been aided immeasurably by high-speed
computing along with technological ad-
vances in observation capabilities to the
extent that we can graphically display
air motion (See Diagram #2: “Mountain
Wave Project Rotor Depiction [7[”). In
order to model the mountain wave, at-
mospheric stability and its variation must
be defined and measured, any changes
in the wind’s character (wind speed and
direction changes, including eddy devel-
opment) must be noted and calculated,
and the variation of terrain in regard to
shape, height, and its influence the initial
air flow disturbance must all be numeri-

Scorer Parameter (I2), [6]

A wave forecast tool that emphasiz-
es the importance of wind speed, sta-
bility, and shear throughout the tropo-
sphere in the generation of mountain
waves:

P = [g(y*- w/ATw)] — [1/u(du/dz’)]

where;

g = acceleration due to gravity;

y* = dry adiabatic lapse rate;

y = ambient lapse rate of the layer;
T'= average temperature in the layer;
u = average wind speed in the layer;
and,

d?u/dz? = curvature term, specifically
the vertical derivative of the vertical
wind shear

If the Scorer Parameter decreases
with height, trapped waves are likely.
The Scorer Parameter will decrease
with height if: stability decreases with
height, wind speed increases with
height, and vertical wind shear in-

creases with height.

Rules:

* A sharp decrease of I* with altitude
indicates lee waves; or

* A sharp increase of I? with altitude
indicates turbulence or rotors.
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cally described. And even as the wave
is generated, downwind terrain features
then interfere with the wave. Given the
“introduction to numerical modeling of
the mountain wave” in this article and
for the sake of my compatriots in the
meteorological field, please be a little un-
derstanding if we seem elusive when an-
swering questions about “why” a moun-
tain wave forms :) .
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