Math 319, Slemrod, spring 2005.

Homework Solutions for §2.2

Covered January 18 Alec Johnson

Problem 3. $y' + y^2 \sin x = 0$

Either
$$y = 0$$
 or:
 $-\frac{yt}{y^2} = \sin x$ (separating variables)
 $y^{-1} = \cos x + c$ (integrating)
 $y = -1/(\cos x + c)$

Problem 4.
$$y' = \frac{3x^2 - 1}{3 + 2y}$$

(Note that
$$y \neq (-3/2)$$
.)
 $(3+2y)y' = 3x^2 - 1$ (separating)
 $3y + y^2 = x^3 - x + c$

Problem 10

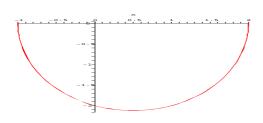
$$y' = (1 - 2x)/y$$
$$y(1) = -2$$

(a) Find the solution of the IVP (initial value problem) in explicit form.

Separate:
$$yy' = 1 - 2x$$

Integrate: $y^2/2 = x - x^2 + c$
Find c using initial conditions: $(4/2) = 1 - 1 + c$
 $c = 2$
Solve for y. $y = \pm \sqrt{2x - 2x^2 + 4}$.
Determine \pm using initial conditions. $y = -\sqrt{2x - 2x^2 + 4}$.

(b) Plot the graph of the solution.



(c) Determine (at least approximately) the interval in

which the solution is defined.

The radicand above is positive when -1 < x < 2.

Problem 18

$$y' = \frac{e^{-x} - e^x}{3 + 4y}$$
$$y(0) = 1$$

(a) Find the solution of the IVP in explicit form.

Separate:
$$(3+4y)y! = e^{-x} - e^x \ (=-2\sinh x)$$

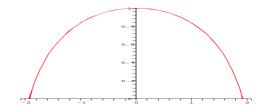
Integrate: $3y+2y^2 = -e^{-x} - e^x + c \ (=-2\cosh x + c)$
(Recall that $\sinh x = \frac{e^x - e^{-x}}{2}$, and that $\cosh x = \frac{e^x + e^{-x}}{2}$.)
Find c using initial conditions: $5 = -2 + c$
 $c = 7$
Solve for y .
 $2y^2 + 3y + 2\cosh x - 7 = 0$
 $y = \frac{-3\pm\sqrt{9-8(2\cosh x - 7)}}{4}$
Initial condition selects positive square root.
So $y = \frac{-3}{4} + \frac{1}{4}\sqrt{65 - 16\cosh x}$
i.e. $y = \frac{-3}{4} + \frac{1}{4}\sqrt{65 - 8e^x - 8e^{-x}}$

(b) Plot the graph of the solution.

The radicand is positive when:

 $65 - 16 \cosh x > 0$ $\cosh x < 65/16$

1



(c) Determine (at least approximately) the interval in which the solution is defined.

 $x < |\cosh^{-1}(65/16)| = 2.07944152$ (Recall that $\cosh^{-1}u = \ln(u + \sqrt{u^2 - 1}, u \ge 1$. Indeed, let $u = \cosh x = \frac{e^x + e^{-x}}{2}$. To solve for x, multiply by $2e^x$ to get: $(e^x)^2 - 2ue^x + 1 = 0$

So
$$e^x = u \pm \sqrt{u^2 - 1}$$
.

Take the positive solution and solve for x: So $x = \ln(u + \sqrt{u^2 - 1}) = \cosh^{-1} u$.

Problem 23

Solve the initial value problem

$$y' = 2y^2 + xy^2, \quad y(0) = 1$$

and determine where the solution attains its mini $mum\ value.$

Separate: $y'/y^2 = 2 + x$ Integrate: $-y^{-1} = 2x + x^2/2 + c$

Fit initial conditions: -1 = c

So $y = 1/(-2x - x^2/2 + 1)$. Write $D_x = \frac{d}{dx}$. To minimize y, set $D_x y = 0$.

Since y = 0 is a solution that does not satisfy our initial conditions, we know that $y(x) \neq 0$ for all x.

So $D_x y = 0$ when $D_x y^{-1} = 0$.

So set $D_x y^{-1} = 0$.

So -2 - x = 0. So x = -2.

This maximizes y^{-1} , so minimizes y.