Math 319 Quiz 1 Section 11:00-12:15 Slemrod February 24, 2005

Calculators okay

NT A N 6TO			
NAME:	 	 	

Problem	Score
1	
2	
3	
4	
5	·
Total	

SHOW YOUR WORK!

1. Solve the initial value problem

$$\frac{dy}{dt} = (\sin t)y + e^{-\cos t}, \quad y(0) = 1.$$

ANS.			
		•	

2. Solve the initial value problem

$$y'' + 2y' + y = \frac{e^{-t}}{(t+1)^2} + \cos t, \ y(0) = 0, \ y'(0) = 0.$$

ANS.		

3. Use Euler's method to give the approximate solution at t=.4 for the initial value problem

$$\frac{dy}{dt} = \sqrt{y+t}, \quad y(.2) = 0.$$

Use step size h = .1. Give your answer to four decimal places

ANS.				•

4. Solve the initial value problem

$$\frac{dy}{dt} = \frac{t+1}{3(y+2)}, \ \ y(0) = -4$$

for t > 0.

ANS.	•	

5. Find the general solution for

$$\frac{d^4y}{dt^4} + 81y = 0.$$

Express your answer in terms of real valued functions.

ANS.	