
1. (a) Draw the directions fields for $-5 \le y \le 5$, $-5 \le t \le 5$ for the differential equation

$$\frac{dy}{dt} = 6 + y - y^2.$$

(b) What is limit as $t \to \infty$ for the solution to initial value problem with y(-1) = -1? (You don't have to solve the equation, just give the answer using part (a).)

ANS.

2. Solve the initial value problem

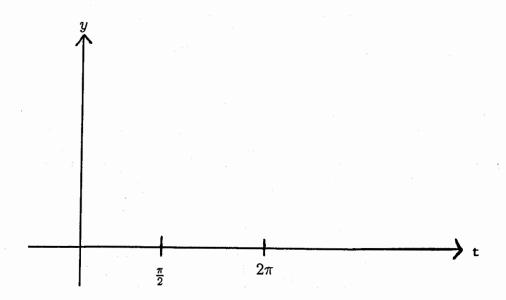
$$\frac{dy}{dt} = \frac{2t}{t^2 + 1}y + t + 1, \quad y(0) = 1.$$

ANS.				
,				

3. Solve the initial value problem

$$y'' + 10y' + 25y = \frac{e^{-5t}}{t} + 25, \quad t > 1$$

 $y(1) = 0, \ y'(1) = 0.$


ANS.				

4. Solve the initial value problem

(a)
$$y''' - y'' + y' - y = 0$$
, $y(0) = 1$, $y'(0) = 0$, $y''(0) = -1$.

ANS.

(b) Make a sketch of your solution for $0 \le t \le \pi$ below.

5. Use Euler's method to find an approximate solution to the initial value problem

$$\begin{cases} y' = y^2 + t \\ y(0) = 0 \end{cases}$$

at t = .2. Use step size h = .1.

ANS.			
	•		