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1 Taylor series.

We recall Taylor’s theorem. A simple version in one
dimension says that for F (t) smooth on [0, 1]

F (1) =
r−1∑
s=0

1

s!
DsF (0) +

1

r!
DrF (t),

where t ∈ [0, 1]. To obtain the general Taylor’s theo-
rem let F (t) = f(x0 + t∆x). Then D becomes (∆x·∇)
and the 1-D Taylor’s theorem now reads as a general
multidimensional Taylor’s theorem:

f(x0 + ∆x) =
r−1∑
s=0

1

s!
(∆x·∇)sf(x0) +

1

r!
(∆x·∇)rf(x̃),

where x̃ ∈ [x0,x0 + ∆x]. Another form comes from
the multinomial expansion (

∑n
i=1 yi)

s =
∑
|k|=s

s!
k!y

k,

where |k| := |k|1 =
∑n

i=1 ki, k! :=
∏n
i=1 ki!, and yk :=∏n

i=1 y
ki
i (k is a vector of nonnegative integers). So

the multinomial form of Taylor’s theorem reads

f(x0+∆x) =
∑
|k|<r

1

k!
∆xk∇kf(x0)

+
∑
|k|=r

1

k!
∆xk∇kf(x̃)

where ∇k := ∂k11 · · · ∂knn . In particular, taking x0 = 0
and ∆x = x, there exist constants ck (= 1

k!∇
kf(0))

and functions c̃k(x) bounded by
∥∥ 1
k!∇

kf
∥∥
∞ such that

f(x) =
∑
|k|<r

ckxk +
∑
|k|=r

c̃kxk.

2 Consistent Projection.

Discontinuous Galerkin (DG) works by in each mesh
cell projecting onto the space V N of polynomials of de-
gree at most N using integrals approximated by Gaus-
sian quadrature. We wish to show that for smooth
solutions the error on a mesh cell of width ∆x is of
order O(∆xN+1). Toward this end we show that the
projection of a smooth function onto a mesh cell using
Gaussian quadrature has error of order O(∆xN+1).

Remark. When the statement “this method is Nth
order accurate” is made, the novice naturally wonders

whether this means that the error term is of order N
or N + 1. We compromise. The error over one time
step (in each cell or globally) is of order N + 1 and
the error over a fixed time interval (at a given point
or globally) is of order N .

Projection.

Definition 2.1. We say that uP ∈ V N is the projec-
tion of u onto V N relative to the (possibly degenerate,
i.e. not strictly positive definite) inner product 〈·, ·〉 if
for any test function φ in V N , 〈u, φ〉 = 〈uP , φ〉. In
particular, if φk is a basis for V N with reciprocal basis
φk then the projection of u onto V N is u = ukφk where
uk = 〈u, φk〉.

L2 projection. Fix the spatial domain to be a mesh
cell C. Let V N denote the space of polynomials of
degree at most N (on C). The L2 projection of u(x)
is defined as the element uP ∈ V N which minimizes
‖u − uP ‖2, where the 2-norm is defined by the inner
product 〈u, v〉 := −

∫
C uv, where −

∫
C := (1/vol(C))

∫
C

is the averaging integeral. I claim that uP is the or-
thogonal projection of u onto V N , i.e. the vector uP in
V N which for all v in V N satisfies 〈u− uP , v〉 = 0, i.e.
〈u− uP , v − uP 〉 = 0. Indeed, then the pythagorean
theorem gives ‖u− v‖2 = ‖u−uP ‖2 + ‖v−uP ‖2 ∀v ∈
V N , which also shows that uP is unique.

General Projection. More generally, orthogonal pro-
jection of a vector onto a subspace in a given in-
ner product (that is strictly positive definite when re-
stricted to the subspace) finds the element of the sub-
space that minimizes the seminorm (induced by the in-
ner product) of the difference between the vector and
its projection.

Orthogonal projection onto a basis. Let φk(x) be
polynomial basis functions which span V N . Then we
can write uP (x) =

∑Np

k=1 u
kφk(x). Let φk(x) denote

the reciprocal basis of V N defined by the requirement
that 〈φi, φj〉 = δji . Then the coefficients of the ex-
pansion are uk = 〈u, φk〉 (which shows the existence
of the orthogonal projection onto a finite-dimensional
subspace).

Gaussian quadrature. Gaussian quadrature ap-
proximates −

∫
C f with a weighted sum of sampled val-

ues: −
∫ GQ
C f :=

∑m
i=1wif(x∗i ). For a one-dimensional

interval, Gaussian quadrature with m optimally cho-
sen points and weights exactly integrates polynomi-
als of degree at most M := 2m − 1. Suppose that
f is a polynomial of degree at most M and C is a
rectangular domain in n-dimensional space. Then we
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can integrate over C using repeated 1-dimensional in-
tegrals. Each iterated integral (exactly) integrates a
polynomial of degree at most M , so for each iterated
integral we can use 1-dimensional Gaussian quadrature
−
∫ GQ
[−1,1] f :=

∑m
i=1wif(ξ∗i ) accurate for polynomials of

degree at most M . In particular, letting the canon-
ical rectangular mesh cell be C̃ := [−1, 1]n (the nth
cartesian power of the canonical interval [−1, 1]),

−
∫
x∈C

f(x) = −
∫
ξ∈C̃

f̃(ξ)

= −
∫
ξ1∈[−1,1]

· · · −
∫
ξn∈[−1,1]

f̃(ξ)

= −
∫ GQ

ξ1∈[−1,1]
· · · −
∫ GQ

ξn∈[−1,1]
f̃(ξ)

=

m∑
i1=1

· · ·
m∑

in=1

wi1 · · ·win f̃(ξ∗i1 , . . . , ξ
∗
in),

showing that a quadrature rule that exactly averages
multivariate polynomials of degree at most M over the
canonical mesh cell C̃ is the “nth tensor power” of a
one-dimensional Gaussian quadrature (tensor power of
weights, cartesian power of points) that exactly aver-
ages polynomials of degree at most M over the canon-
ical interval [−1, 1].

Tensor product basis. Suppose that the polynomi-
als φk are a basis for the space of polynomials of degree
at most N (restricted to the canonical interval [−1, 1]).
Then we can define the tensor product bases φk and φk
on the canonical cell C̃ by φk(ξ) := φk1(ξ1) · · ·φkn(ξn)
and φk(ξ) := φk1(ξ1) · · ·φkn(ξn). Observe that

(φk′ , φk) = δkk′ := δk1
k′1
· · · δknk′n .

Legendre (orthogonal) polynomials. A standard basis
for V N is the monic monomials. On the canonical in-
terval [−1, 1] it is {ξk}Nk=0 = {0, ξ, ξ2, . . . , ξN}. On the
canonical mesh cell C̃ the basis of monic monomials is
the tensor product of the 1-dimensional monic mono-
mials, {ξk}N|k|=0 = {ξk11 · · · ξknn }N|k|=0. We can use the
Gram-Schmidt procedure to define an orthonormal ba-
sis ψk satisfying (ψk, ξ

j) = 0 for j < k. The Legendre
polynomials are such a basis, and any other such basis
consists of rescaled versions of the Legendre polynomi-
als. The tensor product basis for Legendre polynomi-
als is an orthonormal basis and satisfies (ψk, ξ

j) = 0 if
j � k, i.e. if ji < ki for some i.

Taylor expansion. Taylor expand u(x) around a
point x0 in the mesh cell. Without loss of generality
x0 = 0. Then the Taylor expansion of order N says

u(x) = uT (x) + uR(x)

where the Taylor series approximation and remainder
(error) terms are

uT (x) =
∑
|k|≤N

ckxk, uR(x) =
∑

|k|=N+1

c̃kxk.

Projection. To project u onto V N transform from
physical coordinates x in cell C to canonical coordi-
nates ξ in canonical cell C̃, where x = ξ ∗ ∆x, i.e.
xi = ξi ∗∆xi. Making this substitution in the Taylor
expansion,

uT (ξ) =
∑
|k|≤N

ck∆xkξk,

uR(ξ) =
∑

|k|=N+1

c̃k∆xkξk.

So the coefficients of the projection are uk := ukT +ukR
where

ujT = 〈uT (x), φj(x)〉 =
∑
|k|≤N

ck〈xk, φj(x)〉

=
∑
|k|≤N

ck∆xk〈ξk, φj(ξ)〉 and similarly

ujR = 〈uR(x), φj(x)〉 =
∑

|k|=N+1

c̃k〈xk, φj(x)〉

=
∑

|k|=N+1

c̃k∆xk〈ξk, φj(ξ)〉.

Remark 2.2. If φj = ψj (the Legendre polynomials)
then the fact that 〈ξk, ψj〉 = 0 if k � j means that
uj = O(∆xj), i.e., as you refine the mesh higher-order
Legendre coefficients of the projection decay with the
order of the degree of their polynomial.

Proposition 2.1. Let u(x) be a smooth function. The
error of the projection onto V N of a smooth function
u(x) is of the same order O(∆xN+1) as the order of
the remainder in the Taylor expansion of u(x).

Proof. Let uP = 〈u, φk〉φk be the projection of u onto
V N . The error is (uP −u) = (uP −uT )+(uT −u). But
since uT is its own projection and projection is linear,
this is just the projection of the remainder minus the
remainder, both of which are order of the remainder.
That is, (uT−u) = −uR = O(∆xN+1) and (uP−uT ) =
〈u− uT , φk〉φk = 〈uR, φk〉φk = O(∆xN+1) since φk =
O(1).

The foregoing analysis holds regardless of whether the
inner product used to define the projection is integra-
tion, a Gaussian quadrature rule, or any inner product
that is positive definite on V N .
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3 Proof of consistency

Definition 3.1. We say that an evolution equation
and a numerical method are consistent of order
O(∆xN+1) if the residual (i.e. the error of the rate
of change of the solution) when the exact solution to
the evolution equation is substituted into the numeri-
cal method is of order O(∆xN+1).

Proposition 3.1. Suppose that u(x, t) satisfies the
weak form of the evolution equation

dt

∫
(uφ) +

∮
(n · fφ) =

∫
f · ∇φ+

∫
sφ

for all test functions φ. We wish to show that u ap-
proximately satisfies the numerical scheme

dt

∫ GQ

C
(uφk) +

∮ GQ

∂C
(n · fφk) =

∫ GQ

C
f · ∇φk +

∫ GQ

C
sφk.

where φk is a basis for V N .

We have not yet made any use of the fact that Gaus-
sian quadrature agrees with integration on V N ; we
have only used that the inner product it defines is
positive definite on V N . To prove consistency we will
need to use some sort of relationship between the inte-
grals in the weak evolution equation and the numerical
quadratures in the numerical scheme; in particular, we
will use that Guassian quadrature agrees with integra-
tion on V N .

The essence of the proof is that Gaussian quadrature
is exact on the Taylor approximation and that the pro-
jection of the Taylor approximation is itself.

Justification of consistency. We can consider each
term individually. Consider the boundary integral
term. Recall that φk(x) = O(1) (because we de-
fine φk(x) by its values φk(ξ) in the canonical mesh
cell). Let u(x, t) be a smooth solution satisfying
the evolution equation. So f(u) and s(u) are also
smooth. So we can Taylor expand them in each mesh
cell, e.g. f = fT + O(∆xN+1) where fT ∈ V N is
a Taylor expansion. we have e.g.

∮
C(n · fφk) =∮

C(n ·fTφk)+O(∆xN+1) and likewise
∮ GQ
∂C (n ·fφk) =∮ GQ

∂C (n · fTφk) + O(∆xN+1). But
∮ GQ
∂C (n · fTφk) =∮

∂C(n · fTφk) if we require that the Guassian quadra-
ture used to calculate the surface integrals exactly in-
tegrates polynomials of degree at most 2N . So∮ GQ

∂C
(n · fφk) =

∮
C

(n · fφk) +O(∆xN+1).

The proofs for the other terms are similar. Note that
for the term

∫ GQ
C f ·∇φk it is sufficient to use a quadra-

ture rule which exactly integrates polynomials of de-
gree 2N − 1 (because ∇φk is of order N − 1). So we
conclude that

dt

∫ GQ

C
(uφk) = dt

∫
(uφk) +O(∆xN+1)

(where φk may actually be any O(1) test function),
which is basically what we mean when we say that the
rate of change of the solution in V N has error of order
O(∆xN+1).

Remark 3.2. Note that the fact that in the Legendre
basis

∫ GQ
C (uφk) = O(∆xk) is completely irrelevent to

this proof (and in most other (e.g. nodal) bases there
are no such decaying higher modes).

Remark 3.3. Note that we gave no consideration to the
numerical flux function at the boundaries. For consis-
tency and stability to imply convergence the numeri-
cal flux function needs to depend continuously on the
states on each side of the boundary. For consistency
we also require that the numerical flux function agree
with the physical flux function when the states on both
sides of the boundary are equal, e.g. for smooth data
as obtains in the proof of consistency.
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