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This note explains the relationship between symmet-
ric hyperbolic form and the existence of an entropy.
It

1. defines mathematical entropy,

2. shows that a viscosity solution satisfies the en-
tropy inequality,

3. shows that symmetrizability of conservation law
is equivalent to the existence of a mathematical
entropy, and

4. shows that symmetrizability of a conservation
law implies hyperbolicity (well-posedness).

Below xi are (spatial) coordinates, and the repeated
index i indicates summation from 1 to 3. Subscripts
are used to denote partial derivatives.

We study the conservation law

ut + f i(u)xi = 0.

1 Entropy, symmetric variables,
and hyperbolicity

To seek an entropy φ, we multiply and dot the quasi-
linear form with φu:

φu · ut + φu · f iu · uxi = 0.

Suppose that we can find φ(u) and F i(u) such that

F iu = φu · f iu.

Then entropy is conserved:

φt + F ixi = 0.

Observation: in an adiabatic system the value of the
“entropy” s = log(pρ−γ) is conserved along particle
paths:

dt(s) = 0.

This means that φ := (ρs) is entropy in the sense
above of having an entropy flux:

(ρs)t +∇ · (uρs) = 0.

1.1 A convex entropy is satisfied by van-
ishing viscosity

If we also assume that φuu is positive definite, we
can show that

φt + F ixi ≤ 0 (in the sense of distributions).

The inequality is an equality for smooth solutions.
(I understand that this requirement uniquely picks
out the vanishing viscosity solution from other weak
solutions – for a proof in the case of scalar conserva-
tion laws see section 11.4 (Entropy Criteria) of Par-
tial Differential Equations, by Lawrence C. Evans
(1998).)

To see this, we consider the viscosity solution

ut + f ixi = εuxixi

and assume that, as ε goes to zero, u is uniformly
bounded and converges almost everywhere.

As before, we convert the viscosity solution to a (vis-
cous) entropy evolution equation by taking the dot
product with φu:

φt + f ixi = εφu · uxixi .

Looking for a “chain rule” to simplify the RHS (or
looking for a product rule to move derivatives from
u) prompts the observation

φxi = φu · uxi and

φxixi = (φuu · uxi) · uxi + φu · uxixi ,

so the entropy evolution equation becomes

φt + f ixi = ε(φxixi − (φuu · uxi) · uxi).

Invoking that φuu is positive definite,

(φuu · uxi) · uxi ≥ 0,

so we get the viscous entropy evolution inequality

φt + f ixi − εφxixi ≤ 0.

Roughly, taking ε→ 0 gives φt + f i
xi ≤ 0. More rig-

orously, to show that this holds in the sense of distri-
butions, we multiply the viscous entropy inequality

1



by a test function v and integrate (by parts) over
time T = [0,∞) and the spatial domain X:∫

T

∫
X

(φvt + f ivxi + εφvxixi) ≥ 0.

Assuming that u is uniformly bounded (almost ev-
erywhere by a measurable function independent of
ε) and converges almost everywhere as ε goes to
zero, the dominated convergence theorem allows us
to bring the limit inside the integral and gives∫

T

∫
X

(φvt + f ivxi) ≥ 0,

which is what is meant by the statement

φt + f ixi ≤ 0 (in the sense of distributions).

1.2 Symmetrizability ensures existence
of entropy

Given the conservation law

ut + f ixi = 0,

we seek symmetric variables v. The chain rule says
that

uv · vt + f iv · vxi = 0.

Suppose that uv and f iv are symmetric. Then (by
modifying rectilinear paths in only two variables at
a time and invoking Green’s theorem) path integrals
of uv and f iv are independent of (rectilinear) path
and can be used to define scalar potentials φ∗ and ri

satisfying
u = φ∗v and

f i = riv,

where we note that φ∗ is convex if uv is positive
definite; in this case u(v) is injective and we can
speak of v(u).

The Legendre transform (which is convexity-
preserving),

φ(u) = u · v − φ∗(v),

and the “generalized Legendre transform”

F i(u) = f i · v − ri(v)

then allow us to write

v = φu,

where φuu is positive definite, and

F iu = v · f iu = φu · f iu,

which satisfies the conditions in the entropy frame-
work to conclude that

φt + F ixi ≤ 0,

as needed.

We remark that the entropy is the Legendre trans-
form of the potential of the state with respect to the
symmetric variables. (In other words, the deriva-
tive of the entropy is the inverse of the derivative of
the potential function of the state variables.) Sim-
ilarly, the entropy fluxes are the ”generalized Leg-
endre transform” of the potential of the fluxes with
respect to the symmetric variables.

1.3 Entropy ensures existence of sym-
metric variables.

Suppose that the conservation law

ut + f ixi = 0

satisfies an entropy inequality

φt + F ixi ≤ 0,

where φ(u) and F i(u) are scalars, the inequality is
an equality for smooth solutions, and φ is a convex
function of u (e.g. φuu > 0). We will show that the
variables v := φu are symmetric variables.

Assuming smoothness, the entropy equality says

φu · ut + F iu · uxi = 0,

and the conservation law, multiplied by φu, says

φu · ut + φu · f iu · uxi = 0.

Matching these last two equations reveals that any
entropy flux must satisfy

F iu = φu · f iu.
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We define the symmetric variables by

v := φu. (So F iu = v · f iu.)

The assumption that φ is convex says that v(u) is
injective and we can speak of u(v). Using a Legendre
transformation,

u = φ∗v, where φ∗(v) := v · u− φ.

Applying the chain rule to the conservation law,

uv · vt + f iv · vxi = 0.

Since vu is symmetric positive definite, so is uv. I
claim that f iv is symmetric, i.e., that f i is the gradi-
ent of a potential,

f i = riv.

Indeed, using the generalized Legendre transform we
make the definition

ri(v) := v · f i − F i(u)

and verify that

riv = f i + v · f iu · uv − F iu · uv = f i,

as needed.

1.4 Symmetric variables ensure hyper-
bolicity.

Suppose that for the conservation law

ut + f ixi = 0

symmetric variables v exist such that uv is symmet-
ric positive definite and f iv is symmetric.

I claim that the conservation law is hyperbolic. This
means that (assuming smoothness) in the quasilin-
earization

ut + f iu · uxi = 0

each matrix f iu has real eigenvalues and a full set of
eigenvectors.

Indeed, assume smoothness and express the conser-
vation law in terms of symmetric variables,

uv · vt + f iv · vxi = 0,

where uv is symmetric positive definite and f iv is
symmetric. So
√
uv · vt + (

√
vu · f iv ·

√
vu) · (

√
uv · vxi) = 0,

i.e.,
A · vt + Ci ·A · vxi = 0,

where A :=
√
uv and where Ci :=

√
vu · f iv ·

√
vu.

We now linearize by freezing the coefficients about a
state v0 and replacing v by (dv) := v − v0 :

A · (dv)t + Ci ·A · (dv)xi = 0.

Defining the variables

w := A · (dv),

this says
wt + Ci · wxi = 0,

where (recall) Ci :=
√
vu ·f iv ·

√
vu. Since

√
vu and f iv

are symmetric, so is the (frozen) coefficient matrix
Ci, so this linearized system has real eigenvalues and
a full set of (orthogonal) eigenvectors.

I claim that this implies that f iu has real eigenvalues
and a full set of eigenvectors. This follows because
(1) the evolution equation for u has a linearization

(du)t + f iu · (du)xi

whose frozen coefficients are the matrix f iu, and (2)
the variables (du) are related to the variables w by an
invertible linear transformation: since w = A · (dv)
and (dv) = vu ·(du), w = B ·(du) where B := (A·vu).

Plugging this into the evolution equation for w,

(du)t +B−1 · Ci ·B · (du)xi = 0;

matching up these linearizations for the evolution of
(du) shows that

f iu = B−1 · Ci ·B.

So f iu is similar to Ci and therefore has the same
eigenvalues and has a full set of eigenvectors.

1.5 Entropy ensures hyperbolicity.

The existence of an entropy φ for a conservation law
ensures that symmetric variables v := φu exist. But
the existence of symmetric variables ensures hyper-
bolicity.
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1.6 Hyperbolicity does not ensure sym-
metrizability?

(Need to cook up an example.)
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