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This note explains the relationship between symmet-
ric hyperbolic form and the existence of an entropy.
It

1. defines mathematical entropy,

2. shows that a viscosity solution satisfies the en-
tropy inequality,

3. shows that symmetrizability of conservation law
is equivalent to the existence of a mathematical
entropy, and

4. shows that symmetrizability of a conservation
law implies hyperbolicity (well-posedness).

Below 2? are (spatial) coordinates, and the repeated
index ¢ indicates summation from 1 to 3. Subscripts
are used to denote partial derivatives.

We study the conservation law

Ut + fl(u)xz =0.

1 Entropy, symmetric variables,
and hyperbolicity

To seek an entropy ¢, we multiply and dot the quasi-
linear form with ¢,:

Gu U+ Gy - flug =0

Suppose that we can find ¢(u) and F*(u) such that

Fy=¢u- fu.
Then entropy is conserved:
¢t +F ;1 =0.

Observation: in an adiabatic system the value of the
“entropy” s = log(pp~7) is conserved along particle
paths:

dt(s) =0.
This means that ¢ := (ps) is entropy in the sense
above of having an entropy flux:

(ps)t + V- (ups) = 0.

1.1 A convex entropy is satisfied by van-
ishing viscosity

If we also assume that ¢, is positive definite, we
can show that

¢1 + F <0 (in the sense of distributions).

The inequality is an equality for smooth solutions.
(I understand that this requirement uniquely picks
out the vanishing viscosity solution from other weak
solutions — for a proof in the case of scalar conserva-
tion laws see section 11.4 (Entropy Criteria) of Par-
tial Differential FEquations, by Lawrence C. Evans
(1998).)

To see this, we consider the viscosity solution
ur + f;l = €Ugigi

and assume that, as € goes to zero, u is uniformly
bounded and converges almost everywhere.

As before, we convert the viscosity solution to a (vis-
cous) entropy evolution equation by taking the dot
product with ¢,,:

¢t + f;z = €y - Ui g -

Looking for a “chain rule” to simplify the RHS (or
looking for a product rule to move derivatives from
u) prompts the observation

Gpi = Dy - Uy and

so the entropy evolution equation becomes

Invoking that ¢, is positive definite,
(Pun * Ugi ) - Ugi > 0,
so we get the viscous entropy evolution inequality

o1 + f;z — €Dy < 0.

Roughly, taking € — 0 gives ¢ + f;i < 0. More rig-
orously, to show that this holds in the sense of distri-
butions, we multiply the viscous entropy inequality



by a test function v and integrate (by parts) over
time T" = [0, 00) and the spatial domain X:

/T/X(dwt + f10gi + €pvgig) > 0.

Assuming that w is uniformly bounded (almost ev-
erywhere by a measurable function independent of
€) and converges almost everywhere as € goes to
zero, the dominated convergence theorem allows us
to bring the limit inside the integral and gives

| [ on+ren =0

which is what is meant by the statement

¢r + f1, <0 (in the sense of distributions).

1.2 Symmetrizability ensures existence
of entropy

Given the conservation law
i
U + fx'b = 07

we seek symmetric variables v. The chain rule says
that
Uy -Vt + fo vz = 0.

Suppose that u, and f! are symmetric. Then (by
modifying rectilinear paths in only two variables at
a time and invoking Green’s theorem) path integrals
of u, and f! are independent of (rectilinear) path
and can be used to define scalar potentials ¢* and r°
satisfying

u = ¢, and

T 1
f - rvv
where we note that ¢* is convex if w, is positive

definite; in this case u(v) is injective and we can
speak of v(u).

The Legendre transform
preserving),

(which is convexity-

P(u) = u-v—¢*(v),
and the “generalized Legendre transform”

Pi(w) = -0 = 1'(0)

then allow us to write
V= ¢y,
where ¢y, is positive definite, and
Fu=v-fi=du- fu

which satisfies the conditions in the entropy frame-
work to conclude that

¢t + F;z S 07
as needed.

We remark that the entropy is the Legendre trans-
form of the potential of the state with respect to the
symmetric variables. (In other words, the deriva-
tive of the entropy is the inverse of the derivative of
the potential function of the state variables.) Sim-
ilarly, the entropy fluxes are the ”generalized Leg-
endre transform” of the potential of the fluxes with
respect to the symmetric variables.

1.3 Entropy ensures existence of sym-
metric variables.

Suppose that the conservation law
ue+ fli =0

satisfies an entropy inequality
¢+ F, <0,

where ¢(u) and F'(u) are scalars, the inequality is
an equality for smooth solutions, and ¢ is a convex
function of u (e.g. ¢yy > 0). We will show that the
variables v := ¢, are symmetric variables.

Assuming smoothness, the entropy equality says
d)u-ut—l—Fi-uxi =0,
and the conservation law, multiplied by ¢, says
Gu - p + du - fi g = 0.

Matching these last two equations reveals that any
entropy flux must satisfy

Fl = ¢y fL.



We define the symmetric variables by
vi=¢y. (SoF=uv-fli)

The assumption that ¢ is convex says that v(u) is
injective and we can speak of u(v). Using a Legendre
transformation,

u = ¢, where ¢*(v) :=v-u— ¢.
Applying the chain rule to the conservation law,
uv-vt+f];-vw¢ =0.

Since v, is symmetric positive definite, so is u,. I
claim that f! is symmetric, i.e., that f? is the gradi-
ent of a potential,

fr=r

Indeed, using the generalized Legendre transform we
make the definition

r'(v) :=wv- f' — F'(u)
and verify that
Tf,:fi—l—u-fé-uv—FfL-uU:f",

as needed.

1.4 Symmetric variables ensure hyper-
bolicity.

Suppose that for the conservation law

symmetric variables v exist such that u, is symmet-
ric positive definite and f; is symmetric.

I claim that the conservation law is hyperbolic. This
means that (assuming smoothness) in the quasilin-
earization

up + fLug =0

each matrix f! has real eigenvalues and a full set of
eigenvectors.

Indeed, assume smoothness and express the conser-
vation law in terms of symmetric variables,

uv'vt"_fqu'vwi:oa

where w, is symmetric positive definite and f} is
symmetric. So

Vit v+ (Vou - fy - v/0u) - (Vi - 04) = 0,

ie.,

A v +C A v, =0,
where A := ,/u, and where C* := /v, - fi - \/0,.
We now linearize by freezing the coefficients about a
state vp and replacing v by (dv) :==v — vy :
A-(dv); +C*- A (dv),: =0.
Defining the variables
w:=A-(dv),
this says ‘
wy +C* - wyi =0,
where (recall) C* := /v, - fi-/vy. Since \/v, and f

are symmetric, so is the (frozen) coefficient matrix
C", so this linearized system has real eigenvalues and
a full set of (orthogonal) eigenvectors.

I claim that this implies that fi has real eigenvalues
and a full set of eigenvectors. This follows because
(1) the evolution equation for u has a linearization

whose frozen coefficients are the matrix f2, and (2)
the variables (du) are related to the variables w by an
invertible linear transformation: since w = A - (dv)

and (dv) = vy (du), w = B-(du) where B := (A-v,).

Plugging this into the evolution equation for w,
(du); + B™'-C"- B - (du),: = 0;

matching up these linearizations for the evolution of
(du) shows that
fi=B"'.C"- B.

So fi is similar to C* and therefore has the same
eigenvalues and has a full set of eigenvectors.

1.5 Entropy ensures hyperbolicity.

The existence of an entropy ¢ for a conservation law
ensures that symmetric variables v := ¢, exist. But
the existence of symmetric variables ensures hyper-
bolicity.



1.6 Hyperbolicity does not ensure sym-
metrizability?

(Need to cook up an example.)



