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1 PHS problem

Pei, Horiuchi, and Sato in [8, 7] introduced the following
driven reconnection problem which asymptotes to steady
reconnection. I refer to this problem by their initials,
PHS. Ishizawa et al. subsequently studied this problem
in [5] and [4].

1.1 Plasma parameters

Reference [8] uses a mass ratio of mi/me = 25. Refer-
ence [5] also uses mi/me = 200.

1.2 Nondimensionalization

In the references time is is nondimensionalized by ion cy-
clotron frequency ωci := eB0

mi
(e.g.[7], [5]) or electron cy-

clotron frequency ωce := eB0
me

(e.g.[8]). These references
nondimensionalize space using the ion gyroradius.

The GEM problem uses ion skin depth δi rather than
ion gyroradius to nondimensionalize space. That is, it
uses ion Alfvén speed rather than ion thermal velocity
to nondimensionalize velocity. For a Harris sheet equi-
librium these are equivalent, because the thermal pres-
sure at the neutral line balances the magnetic pressure far
from the neutral line. To be specific: The ion skin depth
is the gyroradius of an ion moving at the Alfvén speed,
whereas the gyroradius is the gyroradius of an ion mov-
ing at the thermal speed. The Alfvén speed is the square
root of twice the magnetic pressure divided by the den-
sity, whereas the thermal speed is the square root of (once
or twice) the thermal pressure divided by the density.

The skin depth may be preferable to gyroradius as more
well-defined. It does not depend on the magnetic field
(or temperature) and is completely determined by parti-
cle density: δ2

i := mi
µ0n0e2 .

1.3 Domain

The domain is the rectangle [−xb,xb]× [−yb,yb] in the
x-y plane. Reference [8] chooses xb/yb = 6. To avoid the
formation of islands [5] adopts a narrower xb/yb of 2.

1.4 Initial conditions

The initial condition is a one-dimensional Harris sheet
equilibrium (constant total pressure with unidirectional
magnetic field constant along the direction it points):

Bx(y) = B0 tanh(y/yh),

p(y) = pB sech2(y/yh)+ p∞,

where pB := B2
0

2µ0
, the pressure variation, is also the mag-

netic pressure; the background pressure p∞ is zero, yh
is the scale height, B0 is magnetic field, and µ0 is mag-
netic permeability. The temperature is uniform and equal
in both species, T0 := Ti0 = Te0. (Since pi = niTi and
pe = neTe this implies that number density is proportional
to pressure.)

Reference [8] sets ωpe/ωce (i.e. c/VAe =
(c/VA)

√
me/m0) equal to 3.5 and sets “yh = 0.8yb ≈

3rci”, where rci is the ion cyclotron radius. Recall that
rci := vti/ωci, where vti :=

√
T0/mi is the ion thermal

velocity. The definition of the thermal velocity seems to
vary in the literature — some use v2

ti := 2T0/m0 (see e.g.
[1, 9]) and some use v2

ti := T0/m0 (see e.g. [3]). The ion
cyclotron frequency is ωci = eB0

mi
.

1.5 Boundary conditions

1.5.1 Upstream boundary

Electromagnetic field. Define Ezd(t,x) := Ez(t,x,yb)
and Byd(t,x) := By(t,x,yb). At the upstream boundary
the external “drive” electric field Ezd(t,x) is applied in
the z direction at y = ±yb. The electric field parallel to
the outflow axis is zero (Ex = 0), and the component par-
allel to the inflow axis is constrained by the divergence
constraint which implies that ∂yEy = 0.

The By component is determined from Ez on the inflow
boundary via Faraday’s law. Specifically, the y compo-
nent of Faraday’s law says that ∂tBy = ∂xEz. Integrating
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from (0,yb) to (x,yb) along the line (y = yb) gives

∂t

Z x

0
Byd = [Ezd ]xx=0. (1)

Horiuchi driving electric field. The following descrip-
tion of the driving electric field is obtained from Profes-
sor Horiuchi [Ritoku Horiuchi, private communication,
March 2011] in reference to [8]. The driving electric
field imposed at the input boundary consists of uniform
and bell-shaped components as

Ezd(t,x) = f∞(t)+ f∆(t)
cosφ(x)+1

2
, (2)

where

φ(x) :=


−π if x≤−xd ,
πx/xd if − xd ≤ x≤ xd ,
π if x≥ xd .

The amplitudes f∞(t) and f∆(t) grow with time in pro-
portion to

1− cos(πt
t1

)

2
for 0≤ t ≤ t1.

That is, for 0≤ t ≤ t1

f∞(t) = f∞(t1)
1− cosθ(t)

2
and

f∆(t) = f∆(t1)
1− cosθ(t)

2
, where

θ(t) :=
πt
t1

.

When t = t1 the driving field reaches E0, i.e.

Ezd(t1,0) = E0 = f∞(t1)+ f∆(t1).

Here f∞(t1) = 0.3E0 in [8].

For t1 ≤ t ≤ t2, f∞(t) increases toward E0(0) and
f∆(t) decreases toward zero while keeping the condition
Ezd(t,0) = E0. Specifically, for t1 ≤ t ≤ t2

f∞(t) = f∞(t1)+(E0− f∞(t1))
(

1− cosψ(t)
2

)
,

f∆(t) = f∆(t1)− f∆(t1)
(

1− cosψ(t)
2

)
= f∆(t1)

(
1+ cosψ(t)

2

)
, where

ψ(t) = π
t− t1
t2− t1

.

In [8], t1 = 100/3.5≈ 28.6 and t2 = 500/3.5≈ 143.

For t ≥ t2 the field Ezd(t,x) becomes constant in time and
space.

Inferred magnetic field. From equations (1) and (2) we
can infer By on y = yb:

[Ezd ]xx=0 = f∆(t)
cosφ(x)−1

2
.

So Z x

0
Byd =

(Z t

0
f∆

)
cosφ(x)−1

2
.

But Z t

0
f∆ = f∆(t1)

Z t

0

(
1− cosθ(t)

2

)
for 0≤ t ≤ t1

=
f∆(t1)

θ′

(
θ(t)− sinθ(t)

2

)
for 0≤ t ≤ t1

= t1 f∆(t1)/2 for t = t1.

and Z t

t1
f∆ = f∆(t1)

Z t

t1

(
1+ cosψ(t)

2

)
for t1 ≤ t ≤ t2

=
f∆(t1)

ψ′

(
ψ(t)+ sinψ(t)

2

)
for t1 ≤ t ≤ t2

= (t2− t1) f∆(t1)/2 for t = t2;

that is,

Z t

0
f∆ =


f∆(t1)

θ′

(
θ(t)−sinθ(t)

2

)
for 0≤ t ≤ t1,

t1 f∆(t1)
2 + f∆(t1)

ψ′

(
ψ(t)+sinψ(t)

2

)
for t1 ≤ t ≤ t2.

t2 f∆(t1)/2 for t ≥ t2,

which shows that in steady state the magnetic flux exiting
the top is proportional to the strength and duration of the
perturbation of the driving electric field. Differentiating,

Byd =
−φ′

R t
0 f∆

2︸ ︷︷ ︸
Call β(t)

sinφ(x)

The “early-phase nonuniformity scale” (driving region
width) xd may vary. Reference [8] obtains steady recon-
nection when xd/xb is 0.42 and 0.62. When xd/xb = 0.83
their reconnection is intermittent due to the formation
and ejection of magnetic islands.
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Presumably Bz is zero on the inflow boundary (although
this does not seem to be stated). For Bx it is assumed
that on the boundary the z component of current plus dis-
placement current can be neglected, so ∂yBx ≈ ∂xBy on
y = yb.

Reference [5] says, “The external field Ezd(x, t) is pro-
grammed to evolve from zero to a constant value during
an early phase 0 ≤ t ≤ τA, where τA = yb/VA is Alfvén
transit time and VA is an initial Alfvén velocity.”

Velocity. The inflow velocity is the E×B drift velocity:

u =
E×B

B2 at y =±yb,

which is the component perpendicular to the magnetic
field of the velocity of a frozen-in flux; so we assume
that the component parallel to the magnetic field is zero.

Density and temperature. Though not explicitly stated,
I would suppose that the inflow density and temperature
are those of the initial condition.

Summary of inflow boundary conditions:

ρs = ms p(yb)/T0,

us = E×B/B2,

ps = p(yb)/2?,

∂yBx = ∂xBy = β(t)cos(φ(x))φ′(x),
By = β(t)sin(φ(x)),
Bz = 0(?),

Ex = 0,

∂yEy = 0,

Ez = f∞(t)+ f∆(t)
cosφ(x)+1

2
,

∂yψ = 0,

where we note that

φ
′(x) =

{
π/xd if − xd ≤ x≤ xd ,
0 otherwise.

1.5.2 Downstream boundary

Reference [5] states, “The field quantities Ex, Ey, and
∂xEz are continuous at the downstream boundary. These
conditions enable magnetic islands to go through the
boundary. The remaining components of the field quan-
tities are given by solving the Maxwell equations at the

boundary.” (But [6] states, “At the downstream boundary,
the field quantities Ex, ∂xEy and ∂xEz are continuous”.)
This does not seem to be a full specification of outflow
boundary conditions.

One-dimensional outflow boundary conditions simply
copy from the neighboring cell. (The reason this works
is that copying works for inflowing characteristics, and
for outflowing characteristics it makes no difference what
you do and so copying again works).

In multiple dimensions the characteristics depend on the
choice of direction vector. Unless the solution is constant
perpendicular to such a direction vector copy boundary
conditions don’t seem justified as a way to implement
open boundaries. The general attitude in the computa-
tional community seems to be that if you have significant
transverse derivatives at an artificial boundary you need
to go back and redesign the problem.

Copy boundary conditions are basically equivalent to set-
ting partials with respect to x equal to zero. The induction
equation says:

∂tBx +∂yEz = 0,

∂tBy−∂xEz = 0,

∂tBz +∂xEy−∂yEx = 0.

Setting ∂xEz equal to zero would not allow By to change,
which perhaps explains the quote above.

To allow magnetic islands to exit the domain, can we
populate ghost cells by extrapolating rather than copying
from neighbors? Is this stable?

Summary of outflow boundary conditions:

ρs = copy?

us = copy?

ps = copy?

Bx = copy?

By = copy?

Bz = copy?

Ex = copy?

Ey = copy or extrapolate?

Ez = extrapolate

ψ = copy?

The most sophisticated relevant treatment of outflow
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boundary conditions for PIC that I can find is in [1]. For
Hall MHD [2] sets normal derivatives of all quantities to
zero (i.e. uses copy boundaries, I assume) for both inflow
and outflow to study steady reconnection.

2 Huba-Rudakov problem

I rename variables here to be more like the variable
names typically used for Harris sheet perturbations on
a square domain. For some reason [2] swaps the x and y
axes from the more standard choice of axis names that I
use here.

2.1 Initial condition

Initial conditions.

Equilibrium. Temperature T = T0 is uniform. Pressure
and magnetic pressure are in balance.

Bx(y) = B0 tanh(y/L),

p(y) = pB sech2(y/L)+ p∞, where pB :=
B2

0
2µ0

,

p0 := p(0)
p0 = pB + p∞.

The problem specifies that

p∞ = 0.2p0, so pB = 0.8p0.

Time is normaled to the ion gyrofrequency ωci := eB0
mi

, ve-
locity is normaled to the ion Alfvén speed vAi, and thus
length is normaled to the ion inertial length vAi/ωci. Us-
ing these units the size of the simulation box is given by

Lx = 84 and Ly = 70.

The magnetic field is perturbed by

δB = ∇× (ẑψ) =−ẑ×∇ψ, where

ψ = ψ0 cos
(

2πx
Lx

)
cos
(

πy
Ly

)
, where

ψ0 := δB
Lx

2π
, where δB := 0.1B0.

Thus the perturbations of the components of the magnetic
field are

δBx =
−δB

2
Lx

Ly
cos
(

2πx
Lx

)
sin
(

πy
Ly

)
,

δBy = δBsin
(

2πx
Lx

)
cos
(

πy
Ly

)
.

(There is a missing minus sign in the definition of the
perturbation in [2].)
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They indicate the ion thermal speed as a fraction of the
Alfvén speed:

Ci = 0.41vAi

where Ci := (2T/mi)1/2 is the ion thermal speed. The
constant 0.41 is perhaps a typo. For a Harris sheet the
magnetic pressure and the thermal pressure balance one
another. So there is a simple relationship between the
thermal speed and the Alfvén speed. So one doesn’t re-
ally have freedom to set the thermal speed. Recall that
v2

Ai = 2pB
ρi

, where pB = B2
0

2µ0
is the magnetic pressure, and

note that the thermal speed is C2
i = 2pi

ρi
. So the rela-

tionship Ci = .41vAi implies that pi = .412 pB = .168pB,
which does not seem plausible given that pi + pe should
roughly balance pB.

They state, “Zero-gradient boundary conditions are used
for all variables in both the x and y directions (∂/∂x = 0
and ∂/∂y = 0)”. I assume that they mean that zero
normal-derivative boundary conditions are used at each
boundary. They then say, “Physically, this implies that
there is no acceleration across the boundaries.”

I cannot find where they specify the mass ratio mi/me.
Probably they assume the limit as me/mi goes to zero,
which is typical for a study using Hall MHD (which is
what they are doing).
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