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Theorem 1 (Taylor, with integral remainder). Let f : R —
R have n 4+ 1 continuous derivatives on the interval [a, x].
Then
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Corollary 2 (Lagrange remainder).
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Proof of Theorem 1. To prove Taylor’s theorem, we begin
with the fundamental theorem of Calculus in the form
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which is just Taylor’s theorem with integral remainder for
n =0.

To derive Taylor’s theorm, we will make use of integration
by parts, which says that for any functions g, i differentiable
on [a, z],
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In deriving Taylor’s theorem, it is convenient to replace h
with —h and rewrite this as
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We wish to express f(x) in terms of the value of its deriva-
tives at the a boundary of the interval [a, z]. So we view the
integrand as 1 - f’ and use integration by parts to transfer

the derivative from 1 to f’. [1ds = s — C; we will choose
C' to eliminate the term from the x boundary of [a, x]:
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To eliminate the f’(z) term, we choose C = . Then
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which shows Taylor’s theorem for n = 1.

To prove Taylor’s theorem with integral remainder in gen-
eral, it is enough to show that
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(This is a disguised proof by induction.) Indeed,
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Proof of Corollary 2. Let m = minsg[q 4 fH+D(s) and
let M = maXe(a,q f+1(s).  Then the image of the

interval [a,z] under the continuous function f"*1 is
f0*Y([a, x]) = [m, M], so
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ie. dJec € [a,x] such that R, = (z(;i)ln;lf("*l)(c), as

needed. O




1 Multiple variables.

Corollary 3 (Taylor for multiple variables). Let f : R™
R have n + 1 continuous partial derivatives on an open re-
gion containing the interval [ro,r1]. Then
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for some r. on the line segment between ro and ry.

Proof of Corollary 3. Let h(t) = f(ro + ¢(r1 — rp)). Then
for some ¢ € [0, 1]
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where r. := ro+c¢(r; —rp) lies on the line segment between
ro and ry. O
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