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We can gain insight into the mechanisms for reconnec-
tion of magnetic field lines in plasma by considering con-
figurations highly constrained by symmetries.

We here refer to an “out-of-plane” (z) axis as an “X-
point” if (1) plasma quantities are invariant under trans-
lations along the out-of-plane axis (so the equations are
independent of the out-of-plane coordinate and we can
regard the out-of-plane axis as a point) and (2) on the
out-of-plane axis the magnetic field is parallel to the axis.

A study of magnetic reconnection in the vicinity of an X-
point should give general insight into magnetic reconnec-
tion in regions where the magnetic field is nonvanishing
or where there is a magnetic null line (since the symme-
tries approximate local conditions). Another possibility
— reconnection near a magnetic null point (where the
magnetic field vanishes at an isolated point) — is a dis-
tinct case which requires independent study.

We additionally often impose rotational or reflectional
symmetries: symmetry under 180 degree rotation around
the z-axis or symmetry under reflection across a pair of
orthogonal planes through the z-axis. Symmetry across
a plane implies the absence of a guide field, because
the magnetic field is a pseudovector, which means it is
negated upon reflection. Symmetry across a pair of or-
thogonal planes through the z axis implies symmetry un-
der 180 degree rotation around the z-axis since reflecting
across two orthogonal planes effects a 180 degree rota-
tion. I remark that if the magnetic field is a linear func-
tion of space then symmetry across a plane containing
the z-axis also implies symmetry across the orthogonal
plane through the z-axis (consider eigenvectors).

1 Basic equations

Faraday’s law asserts that

∂tB+∇×E = 0,

where B is magnetic field and E is electric field.

If there is a velocity field v and a φ (e.g. 0) for which
E = B×v+∇φ, then Faraday’s law becomes

∂tB+∇× (B×v) = 0,

which asserts that the magnetic flux is convected by v; the
magnetic field lines are thus frozen in the plasma and the
topology of the magnetic field lines cannot change. Such
a velocity field v is called a flux-transporting flow.

In a plasma each species must satisfy the momentum
equation,

ρsdtus +∇ ·Ps = (qs/ms)ρs(Es +us×Bs)+Rs,

where R is resistive drag due to collisions with other
species, P is the pressure tensor, u is species bulk veloc-
ity, ρ is species mass density, and q/m is charge-to-mass
ratio.

If the inertia dtu, the pressure term ∇ ·P, and the resistive
drag R are all neglible, then E = B×u and magnetic flux
cannot slip through the species.

2 X-point configuration and relation-
ships

Suppose all quantities are independent of the “out-of-
plane” axis z.

2.1 Out-of-plane electric field gives rate of mag-
netic reconnection.

The out-of-plane electric field reveals the rate of change
of the flux across a curve between any two points. In-
deed, taking this curve (without loss of generality) to be
a segment of the y-axis from the origin to a point y1 and
invoking Faraday’s law,

dt(Flux)(t) =
Z y1

0
∂tB1 dy =−

Z y1

0
∂yE3 dy

= E3(0)−E3(y1).

Suppose that there is symmetry under 180-degree about
the z-axis. Then on the z-axis all vectors must be parallel
to the z-axis. This contrains magnetic reconnection.

Suppose v is a flux-transporting flow. If there is an an-
chor point in the domain (e.g. infinity or a conducting
wall) where the out-of-plane electric field is zero and the
flux-transporting flow is constant, then the flux across the
line between the anchor point and the x-point would have
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to be constant and E3(0) would have to be zero. We gen-
erally regard E3(0) as the rate of reconnection at the x-
point.

Since all vectors must be out-of-plane at the origin, the
momentum equation reduces to its out-of-plane compo-
nent, the u×B term disappears, and the material deriva-
tive simplifies to a partial derivative:

ρs∂tus +∇ ·Ps = (qs/ms)ρsEs +Rs.

So the out-of-plane component of the electric field can be
nonzero only if the resistive drag, the divergence of the
pressure, or the inertial term is nonzero.

2.2 Steady collisionless reconnection needs agy-
rotropy.

I claim that nonsingular steady reconnection in collision-
less plasma requires that ∇ ·Ps be nonzero at the origin.
So suppose that the resistivity Rs and the inertial term
ρs∂tus are both zero and that the reconnection electric
field Es is nonzero. If ∇ · Ps = 0 at the X-point, then
ρs = 0 at the X-point, which is a singularity.

For ∇ ·Ps to be nonzero at the X-point, the pressure can-
not be isotropic in the vicinity of the origin. Otherwise,
∇ ·Ps = ∇ ·(psI) = ∇ps, which must be out-of-plane (and
hence zero) at the origin.

More generally, the pressure cannot be gyrotropic in
the vicinity of the origin. Suppose otherwise. Then
Ps = p‖bb + p⊥(I− bb) = bb(p‖ − p⊥) + p⊥I, where

b := B
|B| . So, using that ∇ · B = 0, ∇ · Ps = ∇p⊥ +

B ·∇
( B

B·B(p‖− p⊥)
)
, which must be zero at the x-point

since rotational symmetry implies that ∇ and B ·∇ must
both be zero at the x-point.

This proof has a (singularity) “hole” in it if B vanishes at
the origin.

Suppose there is reflectional symmetry across the x-z
plane and across the y-z plane (so B = 0 at the x-point).
Then the magnetic field on the y-axis must be parallel
to the x-axis and the magnetic field on the x-axis must
be parallel to the y-axis. Thus, gyrotropy implies that
along the x-axis Pxx = Pzz and Pxz = 0 and along the y-
axis Pyy = Pzz and Pyz = 0. So at the x-point (∇ ·P)3 =
∂xPxz + ∂yPyz = 0. Note also that in this case gyrotropy
would imply isotropy at the X-point (where B vanishes).
In fact, gyrotropy generically implies isotropy at an iso-
lated null point except e.g. in the case of antiparallel mag-
netic field lines, where the linearization of the magnetic
field has a nilpotent matrix.
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