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Motivation: magnetic reconnection

http://www.aldebaran.cz/astrofyzika/plazma/reconnection en.html
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Calculations: Brio-Wu shock problem
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Outline

¬ Problem: space weather and fast reconnection

­ Physical model: two-fluid plasma

® Computations: Brio-Wu 1D shock problem

¯ Ideas for future work
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Problem: Space weather

Broad goal: to model space weather.

• Earth bombarded with solar wind.

¬ charged: mostly protons or electrons.

­ sparse: 5-10 protons (or electrons) per cm3.

® fast-moving: proton velocities of 200–800 km/s (.1%–.3% light speed).

• Solar wind varies dramatically.

• Solar storms cause geomagnetic storms.
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Problem: Space weather

How does the solar wind interact with
Earth’s magnetic field?

• Solar wind is decelerated at the bow shock.

• Solar wind is generally deflected around the

magnetopause.

• But reconnection of magnetic field lines

allows plasma to cross the magnetopause

into Earth’s magnetosphere.

(cross-section along ecliptic)

(cross-section along polar axis)
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Problem: Space weather: Magnetosphere
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Problem: Space weather: Magnetosphere

The red circle indicates the position of the four satellites of the European Space Agency’s Cluster fleet.

Credits: ESA
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Problem: Magnetic reconnection

Reconnection at dayside and magnetotail.
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Problem: Magnetic reconnection

Solar wind reconnecting at magnetopause

From Continuous magnetic reconnection at Earth’s magnetopause,
H. U. Frey, T. D. Phan, S. A. Fuselier and S. B. Mende,

Nature 426, 533-537(4 December 2003)
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Problem: Magnetic reconnection

Solar wind reconnecting at magnetopause

14-Aug-2007 21:03:37 UT
Schematic of Reconnection

Date: 03 Feb 2005
Satellite: Cluster

Depicts: Reconnecting field lines

Copyright: N. Tsyganenko, USRA/GSFC/NASA
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Problem: Fast magnetic reconnection

Our project is to develop an efficient algorithm that (1) captures shocks and (2) resolves fast
magnetic reconnection.

(1) Solar wind produces strong shocks.

(2) Fast magnetic reconnection is critical to modeling space weather events.

(a) Fast reconnection seems to make violent solar storms possible.

(b) Reconnection is the primary mechanism that allows gusts of solar wind to penetrate the

magnetosphere and generate geomagnetic storms.
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Problem: Fast solver

How can we make our algorithm efficient?

• Solvers that resolve fast reconnection (and by implication fast waves) tend to be

computationally expensive due to the need for a short time step.

• Reconnection is generally restricted to specific regions of space, and elsewhere cheaper

models that don’t resolve fast waves are accurate enough.

• Our strategy: Can we selectively resolve fast waves in regions where magnetic
reconnection is occurring, and elsewhere use a coarser time step?
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Physical model: Criteria

Criteria to choose a model:

¬ The model should admit the phenomena of interest (e.g., fast reconnection).

­ The model should allow an algorithm that is fast and preferable simple.
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Physical model: Available models

Hierarchy of available models:

¬ Kinetic models.

(a) Fully kinetic models. (particle density

function fs(x, v, t) for both species s.)

• Most accurate but too expensive.

(b) Hybrid models. (an electrons fluid and

kinetic ions.)

• Gets reconnection width correct.

­ Two-fluid models. (an electron fluid and

an ion fluid.)

(a) Collisionless ideal two-fluid model.
(ideal gas for each fluid, fluids coupled

only to electromagnetic field, not

directly to one another.)

• Admits fast reconnection.

• fastest wave: light wave.

® One-fluid models.

(quasineutral conducting fluid.)

(a) Hall MHD. (Ohm’s law with Hall

term.)

• Admits fast reconnection.

• Fastest wave: whistler wave at

numerically controlled speed.

(b) MHD. (Simplified Ohm’s law.)

• (Resistive MHD converges to the

correct steady state, but too slowly

by orders of magnitude; ideal MHD
does not admit reconnection.)

• Fastest wave: fast magnetosonic

wave
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Physical model: Our choice of plasma model

• We have focused on the collisionless two-fluid model rather than Hall MHD.

– The simplicity of the two-fluid model lends itself to explicit shock-capturing methods.

∗ Hall MHD has a differentiated source term, whereas collisionless two-fluid has an

undifferentiated source term.

• We compare our computations with ideal MHD, which should be sufficiently accurate in the

majority of the domain where reconnection is absent.
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Model equations: Conservation law framework

Since we are developing shock-capturing methods, we express our equations as conservation or

balance laws.

q
t
+∇ · f(q) = s(q).

• q is the state (mass, momentum, energy, and electromagnetic field),

• f is the flux, and

• s is the source term.
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Model equations: Two-fluid model

The two-fluid model consists of gas dynamics for each of the two fluids, coupled to Maxwell’s

equations by means of source terms consisting of the Lorentz force, the charge density, and the

current and displacement currents. The gas dynamics equations are

∂t

24 ρs
ρsvs
Es

35
| {z }

conserved

+∇ ·

24 ρsvs
ρsvsvs + ps I
vs
`
Es + ps

´
35

| {z }
hyperbolic flux

=

264 0
qs
ms
ρs(E + vs × B)
qs
ms
ρsvs · E

375
| {z }
electromagnetic source

,

where s = i (ion) or e (electron), qs
ms

is charge-to-mass ratio, ρ is mass density, v is fluid

velocity, E is energy, p is pressure, and E and B are electric and magnetic field, We assume

the ideal gas constitutive relations Es = ps
γs−1 + 1

2ρsv
2
s . The charge density and the current

density of each species are given by the relations σs = qs
ms
ρs and Js = qs

ms
ρsvs.

Maxwell’s equations for the evolution of the electromagnetic field are

∂t

»
cB
E

–
+ c∇×

»
E
−cB

–
=

»
0

−J/ε0

–
| {z }

evolution equations

and ∇ ·
»
cB
E

–
=

»
0

σ/ε0

–
,| {z }

constraint equations

where B = magnetic field, E = electric field, σ = σi + σe = net charge density, J = Ji + Je
= net current, c = light speed, and ε0 = permittivity of free space.
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Model equations: Nondimensionalization

We nondimensionalized to minimize the number of parameters in the two-fluid system.

Chosen characteristic values.

x0 = typical length scale

v0 = typical thermal velocity of an ion

n0 = typical number density

B0 = typical magnetic field strength

m0 = mass of an ion

q0 = charge strength of ion/electron

Immediate nondimensionalizations.

vs = v0bvs
ns = n0bns
B = B0

bB

Implied nondimensionalizations.

t = t0bt where t0 :=
x0
v0

∂t = 1
t0
∂bt

∇ = 1
x0
b∇ where b∇ := ∇bx

ms = m0 bms where m0 := mi

and bms =

(
1 if s = i
me
mi

if s = e

qs = q0bqs where q0 := e

and bqs =


1 if s = i
−1 if s = e

ρs = ρ0bρs where ρ0 := m0n0
σs = σ0bσs where σ0 := q0n0
Js = J0

bJs where J0 := q0n0v0
ps = p0bps where p0 := ρ0v

2
0 = m0n0v

2
0

Es = E0bEs where E0 := p0
E = E0

bE where E0 := B0v0

Relations:
bJi = bρibvi, bσi = bni = bρi,
− bJe =

mi
me bρebve, −bσe = bne =

mi
me bρe.
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Model equations: Nondimensionalized two-fluid model

Our nondimensionalized equations:

∂bt

266666664

bρibρebρibvibρebvebEibEe

377777775
+ c∇·

266666664

bρibvibρebvebρibvibvi + bpi Ibρebvebve + bpe Ibvi`bEi + bpi´bve`bEe + bpe´

377777775
=

1brL

266666664

0

0bρi(bE + bvi × bB)

−mi
me
bρe(bE + bve × bB)bρibvi · bE
−mi
me
bρebve · bE

377777775
,

∂bt
"bcbBbE

#
+ bcd∇×" bE

−bcbB
#

=

»
0

−bJ/ε
–
, and b∇ · "bcbBbE

#
=

»
0bσ/ε
–
.

• rL :=
m0v0
q0B0

is the Larmor radius, the

radius of curvature of the circular motion

of a typical ion moving perpendicular to

a characteristic magnetic field ( brL :=

rL/x0),

• ε := 1crLdλD2 plays the role of permittivity,

and

• cλD is the ratio of the Debye length to

the Larmor radius. The Debye length,r
ε0m0v

2
0

n0q
2
0

, is the distance scale over

which electrons screen out electric fields in

plasmas (i.e. the distance scale over which

significant charge separation can occur).

n0 is a typical value for number density.
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Model equations: Ideal MHD

If we consider an asymptotic limit of the

two-fluid equations as the Larmor radius rL
goes to zero, we obtain (some of?) the

following assumptions used in deriving the

MHD equations:

¬ σ ≈ 0 (quasineutrality)

­ ∂tE ≈ 0 (Ampere’s law)

® E ≈ B× v (Ohm’s law)

¯ E2 ≈ 0 (small E)

The work we report compares the two-fluid

plasma model with ideal MHD as we take the

Larmor radius rL to zero. The full system of

ideal MHD equations is

∂

∂t

26664
ρ

ρv
Ẽ
B

37775+∇·

26664
ρv

ρvv + p̃ I− 1
µ0

BB
v
`
Ẽ + p̃

´
− 1

µ0
BB · v

vB− Bv

37775
| {z }

hyperbolic flux

= 0

and the physical constraint ∇ ·B = 0, where

ρ is the mass density, v is the fluid velocity

field, Ẽ := E + 1
2µ0
B2 is the total energy

(gas-dynamic energy plus magnetic energy), B
is the magnetic field, and p̃ := p + 1

2µ0
B2 is

the total pressure (gas-dynamic pressure plus

magnetic pressure). The gas-dynamic pressure

is p = (γ − 1)(E − 1
2ρv

2), where γ = 5
3 is

the ratio of specific heats.
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Numerical method: Operator splitting

Shock-capturing limits us to first-order accuracy in shock-influenced regions. We aim for

second-order accuracy for smooth data. This justifies operator splitting:

¬ ODE solver

­ Hyperbolic PDE solver

(a) Gas-dynamics solver (explicit, shock-capturing)

(b) Maxwell solver (ultimately implicit)
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Numerical method: ODE solver

We used RK4 to solve the ODE:

∂bt

2666666666664

bρibρebρibvibρebvebEibEebBbE

3777777777775
=

1brL

266666666666664

0

0bρibE + bρibvi × bB
−mi
me

(bρebE + bρebve × bB)bρibvi · bE
−mi
me
bρebve · bE
0

−1dλD2

`bρibvi − mi
me
bρeve´

377777777777775
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Numerical method: Hyperbolic PDE solver

The hyperbolic part decouples into three independent systems:

¬ Gas-dynamics for ions

∂bt
24 bρibρibvibEi

35+ c∇·
24 bρibvi

(bρibvi)bvi + bpi Ibvi`bEi + bpi´
35 = 0

­ Gas-dynamics for electrons

∂bt
24 bρebρebvebEe

35+ c∇·
24 bρebve

(bρebve)bve + bpe Ibve`bEe + bpe´
35 = 0

® Homogeneous Maxwell’s equations

∂bt
"bcbBbE

#
+ bcd∇×" bE

−bcbB
#

= 0
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Numerical method: Hyperbolic PDE solver

We used an explicit, finite-volume, shock-capturing numerical method, implemented in Randall

LeVeque’s CLAWPACK (Conservation LAW PACKage).

Finite Volume method framework in 1 dimension:

• In 1D, our PDE is of the form

qt + f(q)x = 0.

• Finite volume methods for this equation can be written in conservation form:

Q
n+1
i = Q

n
i −

∆t

∆x
(F

n
i+1/2 − F

n
i−1/2),

where Qn
i represents the cell-average state value (alternately regarded as the state value at

the center of the cell), and F n
i+1/2 represents the flux rate out of the right cell boundary.

• Need to estimate the fluxes.
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Numerical method: Hyperbolic PDE solver

We use an approximate Riemann solver to estimate flux values at each cell interface.

Estimate cell interface fluxes over one time
step using an approximate Riemann solver:

• For smooth data our PDE can be written

in the form:

qt + fq · qx = 0

• At each cell interface we approximate with

frozen coefficients:

qt + A · qx = 0,

where A represents fq evaluated at some

average (we chose the arithmetic average)

of the states in the cells to the left and the

right of the interface at the beginning of a

time step.

• To compute the interface fluxes evolve a

piecewise-linear reconstruction of the initial

state using the frozen coefficient PDE over

one time step.

• Piecewise-linear reconstruction of initial

state:

– Piecewise-constant = Godunov

– Connect-the-dots = Lax-Wendroff

– Slope-limiters = high-resolution

• Slope limiters:

– Need eigenstructure of flux Jacobian

– Split the flux jumps into eigenjumps and

apply limiters to cap eigenjumps from

overshooting neighboring cell values.

(We used the MC (Monotonized Central

difference) limiter.)
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Numerical method: Hyperbolic PDE solver

Formulas to compute numerical fluxes

The fluxes are computed as

Fi−1/2 = F
R
i−1/2 + F̃i−1/2,

where FR
i−1/2

is the Riemann flux and F̃i−1/2 is a second-order

limited correction flux.

F
R
i−1/2 =

1

2

“
f(Qi−1) + f(Qi)

”
+

1

2

“ X
sp<0

Z
p
i−1/2

−
X
sp>0

Z
p
i−1/2

”
,

where the “flux waves” Z
p
i−1/2

are defined by a decomposition

of the flux jump in terms of the eigenvalues sp and corresponding
eigenvectors of Âi−1/2, an approximation to f ′(Qi−1/2):

f(Qi)− f(Qi−1) =:
X
p
Z
p
i−1/2

).

Typically

Âi−1/2 = f
′“Qi−1 +Qi

2

”
.

The correction flux is

F̃i−1/2 =
1

2

X
p

sgn(s
p
i−1/2

)
“

1−
∆t

∆x
|sp
i−1/2

|
”
Z̃
p
i−1/2

where

Z̃
p
i−1/2

= vectorLimiter(Zp
i−1/2

, Z
p
Ip−1/2

)

where Ip is the upwind index in the p-th eigenvalue:

I
p

= i− sgn(s
p
)

The vectorLimiter function is typically computed by projecting
the second argument onto the first and applying a scalar limiter
function:

vectorLimiter(U, V ) = scalarLimiter
“

1,
U · V
U · U

”
U.
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Numerical method: Hyperbolic PDE solver

Scalar Limiters

How a scalar limiter computes its value:

¬ Inputs are a slope (or jump) at an interface

and the upwind interface.

­ If the inputs have opposite signs, return 0.

® Compute a preliminary output.

¯ Cap the output by twice the bigger input.

How the preliminary output is computed:

¬ minmod: the minimum-sized argument

(which makes capping unnecessary);

­ superbee: the larger of the two arguments;

® MC (monotonized central-difference

limiter): the average of the two arguments;

¯ van Leer: twice the product divided by the

sum (which makes capping unnecessary).

Concrete formulas:

minmod(1, θ) =

8<:
1 if 1 ≤ |θ|
θ if 0 < θ| ≤ 1

0 if θ ≤ 0

,

superbee(1, θ) = max
`
0,minmod(1, 2θ),

minmod(2, θ)
´
,

MC(1, θ) = max
“

0,min
“1 + θ

2
, 2, 2θ

””
,

van Leer(1, θ) =


0 if θ ≤ 0
2θ

1+θ otherwise.
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Numerical method: Hyperbolic PDE solver

(Henceforth we drop hats.)

We want to maintain the divergence constraints:

¬ ∇ · B = 0. Automatically maintained for 1D code.

­ ∇ · E = σ/ε. We tried:

(a) not enforcing (“cell-centered”), and

(b) Yee scheme (i.e., a staggered grid for E1).
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Computations: Brio-Wu shock problem

We computed solutions to the Brio-Wu 1-dimensional shock problem [BrioWu88].

Initial conditions for ion density:

discontinuity at zero, elsewhere constant.
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Computations: Brio-Wu shock problem

For MHD the Brio-Wu initial conditions to the
left and right of zero are:

26666666666664

ρ

v1

v2

v3

p

B1

B2

B3

37777777777775
left

=

266666666664

1.0
0
0
0

1.0
0.75
1.0
0

377777777775
and

26666666666664

ρ

v1

v2

v3

p

B1

B2

B3

37777777777775
right

=

266666666664

0.125
0
0
0

0.1
0.75
−1.0

0

377777777775

The equivalent two-fluid initial conditions
are:

266666666666666666666666666666664

ρi
v1
i
v2
i
v3
i
pi
ρe

v1
e
v2
e
v3
e
pe

B1

B2

B3

E1

E2

E3

377777777777777777777777777777775
left

=

26666666666666666666666666664

1.0
0
0
0

0.5

1.0memi
0
0
0

0.5
0.75
1.0
0
0
0
0

37777777777777777777777777775

and

266666666666666666666666666666664

ρi
v1
i
v2
i
v3
i
pi
ρe

v1
e
v2
e
v3
e
pe

B1

B2

B3

E1

E2

E3

377777777777777777777777777777775
right

=

26666666666666666666666666664

0.125
0
0
0

0.05

0.125memi
0
0
0

0.05
0.75
−1.0

0
0
0
0

37777777777777777777777777775
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Computations

We plotted ion density at nondimensionalized time t = 0.1 for a range of values of the

nondimensionalized Larmor radius:

• rL =∞ (an Euler gas dynamics computation),

• rL = 10, 1, 0.1, 0.01, 0.003 (two-fluid computations), and

• rL = 0 (an ideal MHD computation).

Results:

• As rL → 0, the solution seems to weakly approach the MHD solution.

• For smaller values of rL computation becomes prohibitively expensive as we need a finer

computational grid to prevent negative pressures or densities from crashing the code and to

get convergence.

• For intermediate values of rL, the computational domain needs to be extended the most

due to substantial fast-moving oscillations.
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Computations (cell-centered), rL = 10

When the Larmor radius is large (rL = 10), the electromagnetic effects are weak and the ions

behave like an ideal gas. (At rL = 100, 2-fluid is indistinguishable from Euler.)
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Computations (cell-centered), rL = 1

As we decrease the Larmor radius, the solution begins to transition away from gas dynamics

(and eventually toward MHD).
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Computations (cell-centered), rL = 0.1

When t ≈ rL, the solution is roughly intermediate between Euler and MHD.
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Computations (cell-centered), rL = 0.01

As the Larmor radius becomes even smaller, the frequency of the oscillations increases and the

solution begins to weakly approach the MHD solution.
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Computations (cell-centered), rL = 0.003

Convergence to MHD is suggested but far from confirmed. Unfortunately, computational

expense increases with decreasing Larmor radius.
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Computations (cell-centered): Convergence with mesh-refinement, rL = 0.01

The two solutions with finer resolution (2000 versus 4000 grid points per unit) are almost

indistinguishable at the scale of this plot. Notice that the coarse mesh does not resolve the

Langmuir oscillations (?) on the left.
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Computations (cell-centered): Rate of convergence, rL = 0.01

A blow-up of the previous plot showing convergence

near the right end of the slow compound wave of MHD.
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Numerical method: Yee scheme

The Yee scheme uses a staggered grid to

represent E1 and maintains the following

discretization of the divergence constraint

∇ · E = σ/ε:

E1
i+1/2 − E

1
i−1/2

∆x
=
σi

ε
.

Yee scheme time step:

¬ Average the staggered values of E1 to

obtain cell-centered values:

E
1
i =

E1
i+1/2 + E1

i−1/2

2

­ Use cell-centered solver to update all state

values. (We will discard the updated

values of E1
i that this produces.) Retain

the computations of flux for the charge

densities of the ions and electrons and add

them to get a net charge flux:

J
1,n+1/2

i+1/2
= J

1,n+1/2

ion,i+1/2
+ J

1,n+1/2

electron,i+1/2

® Update the first component of the electric

field by means of:

E
1,n+1
i+1/2

= E
1,n
i+1/2

−
∆t

ε
J

1,n+1/2

i+1/2
.
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Computations with Yee scheme

Results:

• For large Larmor radius the Yee scheme was indistinguishable from the cell-centered scheme.

• For intermediate values of Larmor radius (rL = t = 0.1), the Yee scheme is less accurate

for a coarse mesh but more accurate for a fine mesh.

• For small Larmor radius the Yee scheme required a prohibitively small mesh size to prevent

negative or vanishing densities.

• Suggested conclusion: Use the cell-centered scheme for a large mesh and switch to the Yee

scheme for a sufficiently fine mesh.
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Computations, cell-centered, rL = 0.1

(Cell-centered computation for comparison with Yee scheme.)
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Computations: Comparison with Yee scheme, rL = 0.1

The plot of the Yee scheme is indistinguishable from the unstaggered scheme except in the

squiggly area near the right end of the slow compound wave of MHD and the peak in the

rarefaction wave of MHD.
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Computations: Comparison with Yee scheme, rL = 0.1

Close-up near MHD compound wave.

The Yee scheme converges much more rapidly in this region of high oscillation near the right

end of the slow compound wave of MHD (compare the highly resolved solution in Fig. 4 of

[Hakim06]).
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Computations: Comparison with Yee scheme, rL = 0.1

Close-up near MHD fast rarefaction wave.

Here at the peak in the MHD rarefaction wave region, the Yee scheme performs more poorly at

coarse resolution, but better at fine resolution (compare the highly resolved peak in Fig. 3 of

[Hakim06]).
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Future work

¬ Accelerate 1D solver for Brio-Wu by resolving fast waves and high frequencies only where

needed (using techniques such as adaptive mesh refinement and implicit methods), and

compare with Hall MHD.

­ Extend solver to 2-dimensions.

® Obtain a fast solution to a 2D reconnection problem like the Geospace Environmental

Modeling (GEM) reconnection challenge problem.

¯ Extend solver to special and general relativistic flows.
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