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Physical motivation: Space weather

Broad goal: to model space weather.

• Earth bombarded with solar wind.

• Solar wind is generally deflected by
Earth’s magnetic field.

• Reconnection of magnetic field lines
allows plasma to enter the region
occupied by Earth’s magnetic field
lines and propagate to Earth’s poles.

From Continuous magnetic reconnection at Earth’s
magnetopause,

H. U. Frey, T. D. Phan, S. A. Fuselier and S. B. Mende,

Nature 426, 533-537(4 December 2003)
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Critical phenomenon: fast magnetic reconnection

Fast reconnection provides the mechanism that allows solar storms to trigger
violent geomagnetic storms.

http://www.aldebaran.cz/astrofyzika/plazma/reconnection en.html

Our project is to develop an efficient algorithm that resolves fast magnetic
reconnection.
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Simulating fast reconnection: a multiscale problem

Fast reconnection makes space weather a

multiscale modeling problem. We seek

the simplest (most computationally efficient)

model that resolves the behavior of interest.

Models that we have considered are

¬ Coarse model: MHD
(magnetohydrodynamics)

• computationally cheap (does not admit

fast waves)

• adequate for most of the domain

• ideal MHD does not admit reconnection

• resistive MHD does not admit fast

reconnection

­ Fine models (admit fast reconnection)

(a) Less Fine: Hall MHD
• admits fast (whistler) waves, but not

light waves

• numerically difficult: differentiated

source term with eigenvalues on the

imaginary axis

(b) Fine: 2-fluid
• pressure tensor

i. Maxwellian (isotropic)

– admits fast reconnection but

structure of reconnection region

is inaccurate

ii. Gaussian (anisotropic)

– agrees well with collisionless PIC

(c) Finest: Collisionless Kinetic (PIC:

particle-in-cell)

• most computationally expensive; PIC

is noisy

• gets right structure of reconnection

region

For our choice of fine scale model, we are most

interested in the Gaussian 2-fluid model, but so

far have worked primarily with the Maxwellian

2-fluid model. We are implementing a PIC

model as a standard of comparison.
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Strategy: domain-decomposition

We want to develop a domain-decomposition

multiscale algorithm which uses a kinetic

model in small regions where reconnection is

occurring and elsewhere uses MHD.

Why stitching models is a good idea:

• 2-fluid converges to MHD as gyroradius

goes to zero

• ratio of explicit 2-fluid/PIC to MHD

cost increases with inverse square of

nondimensionalized gyroradius

Strategy for a stitched model. Framework

of the domain-decomposition (“stitching”)

model we are working towards:

• use MHD solver over the global domain

• use embedded microscale (2-fluid/PIC)

solver in regions where conditions are

hospitable to fast reconnection

How data exchange should work:

• MHD provides microscale solver with

boundary data

• microscale provides MHD with corrected

values of state variables in overlap region.

• stitch smoothly at the boundary between

models using a “sponge layer”
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Model state variables

Exchanging data requires specifying the state variables of each model (and the maps between

them.)

MHD (or Hall MHD) state variables:0BB@
ρ

ρu
E
B

1CCA =

0BB@
mass

momentum

gas-dynamic energy

magnetic field

1CCA
Maxwellian 2-fluid state variables:0BBBBBBBBBBB@

ρi
ρiui
Ei
ρe
ρeue
Ee
B
E

1CCCCCCCCCCCA
=

0BBBBBBBBBBB@

ion mass

ion momentum

ion energy

electron mass

electron momentum

electron energy

magnetic field

electric field

1CCCCCCCCCCCA

PIC state variables:0BBB@
B
E

(xp)Np=1

(vp)Np=1

1CCCA =

0BB@
magnetic field

electric field

particle positions

particle velocities

1CCA
Gaussian 2-fluid state variables:0BBBBBBBBBBB@

ρi
ρiui
Ei
ρe
ρeue
Ee
B
E

1CCCCCCCCCCCA
=

0BBBBBBBBBBB@

ion mass

ion momentum

ion energy tensor

electron mass

electron momentum

electron energy tensor

magnetic field

electric field

1CCCCCCCCCCCA
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Mapping between micro and macro states

To traverse the hierarchy of models we need to specify mappings between state
variables that are adjacent in the hierarchy.

• Mapping from micro to macro states is called compression.

• Mapping from macro to micro states is called reconstruction.

• Compression: typically involves straightforward summing or averaging

• Reconstruction: the inverse mapping is nonunique, so reconstruction requires
additional assumptions or information to pick out a solution.
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Mapping from Maxwellian 2-fluid to MHD states

An energy-conserving compression
mapping from Maxwellian 2-fluid to
MHD states is

ρ = ρi + ρe,

ρu = ρiui + ρeue,

E = Ei + Ee (problem!)

B = B.

This mapping regards the drift velocity
kinetic energy species drift velocity as
part of the thermal energy in MHD.
So the MHD gas-dynamic pressure

computed by this mapping is pMHD =
pi + pe + ρiu

2
i/2 + ρeu

2
e/2. The

problem with this mapping is that the
inverse mapping can compute negative
species pressures even if the MHD
pressure is positive, as we find in
practice for strong shocks. Therefore
we abandon energy conservation and
instead assume that the MHD gas-
dynamic pressure is the sum of the
species pressures:

pMHD = pi + pe.
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Reconstructing Maxwellian 2-fluid from MHD states

To invert the compression mapping we need additional information:

¬ ratio of number densities: provided by MHD assumption of quasineutrality:

ρi =
mi

mi +me

ρ, ρe =
me

mi +me

ρ.

­ drift velocities: provided by MHD assumptions of quasineutrality and ∂tE ≈ 0 (Ampere’s

law):

J = µ
−1
0 ∇× B,

ui = u +
me

eρ
J, ue = u−

mi

eρ
J.

® ratio of thermal energies: Would naturally use to split thermal energy. Instead, we split

pressure to avoid negative pressures:

pi =
Ti

Ti + Te
p, pe =

Te

Ti + Te
p
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¯ Ohm’s law : Ohm’s law is balance of net current solved for the electric field. Assuming

quasineutrality gives:

E = ηJ + B× u +
m̃i − m̃e

ρ
J× B +

1

ρ
∇ · (m̃ePi − m̃iPe)

+
m̃im̃e

ρ

“
∂tJ +∇ ·

`
uJ + Ju +

m̃e − m̃i

ρ
JJ
´”

;

here m̃i :=
mi
e and m̃e := me

e are species mass-to-charge ratios, and η is resistivity, which

is assumed to be zero in the collisionless model. Ideal MHD uses a simplified Ohm’s law

which says that the electric field is zero in the reference frame of the fluid:

E = B× u.

Hall MHD also retains the Hall term,
m̃i−m̃e

ρ J × B. In the reconnection region we also

expect the electron pressure term
m̃i
ρ ∇ · (Pe) and the ion inertial term

m̃im̃e
ρ ∂tJ to be

significant.
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Mapping between Gaussian and Maxwellian 2-fluid states

The compression mapping from Gaussian to Maxwellian states is straightforward:

ps = (1/3)trace(Ps).

(Recall that Es = Ps + ρusus; half the trace of this equation gives the isotropic constitutive

relation Es = (3/2)p+ (1/2)ρu2.)

The inverse mapping is provided by the assumption of isotropy:

Ps =

24p 0 0

0 p 0

0 0 p

35
Since the thermal energy is half the trace of the pressure tensor, these mappings conserve

(thermal) energy.
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Mapping between kinetic and 2-fluid states

¬ Compression mapping from kinetic to 2-fluid states:

• compute statistical moments for each cell to get values of mass,
momentum, and pressure or energy.

­ Reconstruction of particles from moments:

• uses moments and assumed form of distribution of velocities (e.g.
Maxwellian or Gaussian)
• needed when creating particles for an initial state or injecting particles at

model boundaries.
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Equations: Vlasov

We take the Vlasov equation (i.e. the collisionless Boltzmann equation) as the
true description of a collisionless plasma. It says that the particle density of
each species is conserved in phase space.

∂tfs +∇x · (vfs) +∇v ·
( qs
ms

(E + v ×B)fs
)

= 0,

Here s is a species index, fs(t,x,v) is particle density as a function of the
independent variables.
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Equations: kinetic

The equations of the kinetic model are Maxwell’s equations and the Lorentz
force to govern particle motion:

∂tB = −∇× E, ∇ ·B = 0,

∂tE = c2∇×B − J/ε, ∇ ·E = σ,

∂t(γvp) =
1
r

qp
mp

(
E(xp) + vp ×B(xp)

)
, ∂txp = vp,

J =
∑
p

qpvpS,

where p denotes particle index and S denotes the spatial charge distribution of
a single particle (e.g. an impulse function). (In the nondimensionalization r is
the nondimensionalized gyroradius of a typical ion.)
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Equations: 2-fluid

Two-fluid models use fluid equations to model the evolution of each species. The collisionless
two-fluid model is obtained by taking moments of the Boltzmann equation,

∂tfs +∇x · (vfs) +∇v ·
“ qs
ms

(E + v × B)fs
”

= Cs,

where Cs is a collision operator. Assuming no interspecies collisions, mass and momentum

evolution equations are

∂tρs +∇ · (ρsus) = 0,

∂t(ρsus) +∇ · (ρsusus + Ps) =
qs

ms

ρs(E + us × B),

where s ∈ {i, e} denotes the ion or electron species, ρs := ms

R
v fs is the density,

us := 〈v〉s :=
R
v vfsR
v fs

is the mean velocity, and Ps := 〈cscs〉 is the pressure tensor, where

cs := v − us is the thermal velocity. Note that there is no direct coupling between species.

The two fluids interact only by means of their coupling to Maxwell’s equations:

∂tB +∇× E = 0,

∂tE− c2∇× B = −(
P

s
qs
ms
ρsus)/ε,

∇ · B = 0,

∇ · E = (
P

s
qs
ms
ρs)/ε.

15



To close the system we need to specify the pressure tensor Ps. Multiplying the Boltzmann

equation by cc and integrating gives the pressure tensor evolution equation

∂t(ρsusus + Ps) +∇ ·
`
ρsususus + 3 Sym(usPs) + P[3]

s

´
=

qs

ms

2 Sym
`
ρsusE + (Ps + ρsusus)× B

´
+

Z
v
cscsCs,

where Sym denotes the symmetric part of its argument tensor, Ps is the pressure tensor, and

P[3]
s := ρ〈ccc〉 is the generalized heat flux.

The ten-moment two-fluid model neglects the collision term
R
cccCs and the generalized heat

flux. The generalized heat flux vanishes if the distribution in velocity space is an aniostropic

Gaussian, which we will assume.

The ideal two-fluid model instead uses the energy evolution equation (which is half the trace of

the energy tensor evolution equation) and closes the system with the more restrictive assumption

that the distribution in velocity space is Maxwellian. Again assuming no interspecies collisions,

∂t
“1

2
ρsu

2
s +

3

2
ps
”

+∇ ·
„

us
“1

2
ρsu

2
s +

3

2
ps
”

+ usps

«
=

qs

ms

`
ρsus · E

´
.

We note that the Maxwellian 2-fluid model assumes equilibrating collisions and is inconsistent

with the ten-moment model.
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Equations: MHD

The equations of ideal MHD in conservative form are

∂t


ρ
ρu
Ẽ
B

+∇ ·


ρu

ρuu + Ip̃MHD − µ−1
0 (BB)

u(Ẽ + p̃MHD)− µ−1
0 BB · u

uB−Bu

 = 0,

where Ẽ = E + µ−1
0 B2/2 is total energy, where E = (3/2)pMHD + (1/2)ρu2 is

MHD gas energy, and p̃MHD = pMHD + µ−1
0 B2/2 is total pressure.
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Numerical schemes

We have implemented second-order-accurate time-splitting shock-capturing
schemes that maintain Maxwell’s divergence constraints for the Ideal MHD
and Maxwellian 2-fluid models in one and two dimensions of space.

(At this time my 1-D PIC code appears not to be conserving energy and my
1-D Gaussian 2-fluid code is giving non-positive-definite pressures.)

For the two-fluid solver, we used time-splitting to decouple the hyperbolic flux
from the (nondifferentiated) source term. We used a shock-capturing method
for the hyperbolic flux and RK4 for the source term ODE.
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Numerical PIC scheme

Our PIC scheme will use staggering in time and space to achieve second-order accuracy and

maintain the divergence constraints. (My current PIC code uses a finite-volume method for the

electromagnetic field and appears to be losing energy.) Our scheme is:

(∂tE)
m+1/2

= c
2
(∇× B)

m+1/2 − Jn+1/2
/ε,

implicit case: (∂tB)
m+1/2

= −(∇× E)
m+1/2

explicit case: (∂tB)
m+1

= −(∇× E)
m+1

(∂t(γv)p)
n

=
1

r

qp

mp

“
En(xnp) +

vn+1/2
p + vn−1/2

p

2
× Bn

(xnp)
”
,

(∂txp)
n+1/2

= vn+1/2
p , Jn+1/2

=
X
p

qpv
n+1/2
p S.

For second-order accuracy we choose the particle shape S to be a mesh-cell-sized rectangle.

The discrete differential operators denote second-order centered difference operators in time
and space. The spatial staggering (Yee scheme) centers vector components on the cell faces to which they are perpendicular
and centers components of pseudovectors (e.g. B) along cell edges. Taking the discrete divergence of the electromagnetic evolution
equations shows that∇ · B = 0 is maintained and that (∇ · E)n = σn/ε is maintained if we enforce that current is charge flux, i.e.,

(∂tσ)n+1/2 + Jn+1/2 = 0.
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2-D GEM study

James has implemented a 2D Discontinuous Galerkin shock-capturing solver
for the Geospace Environmental Modeling Magnetic Reconnection Challenge
Problem (GEM reconnection problem). Our two-fluid results replicate those
of Hakim, Loverich, and Shumlak [Hakim06].

Boundary conditions. The domain is periodic in the x-axis. The boundaries
perpendicular to the y-axis are conducting wall boundaries.

Initial conditions. The initial conditions are a perturbed Harris sheet
equilibrium.

Model Parameters. We assumed that the ion to electron mass ratio was 25.
For our nondimensionalization parameters we assumed that the gyroradius of
the ions, the Debye length, and the light speed are all unity.

20



2-D GEM problem boundary conditions

Boundary conditions. A conducting
wall boundary is a solid wall boundary
(with slip boundary conditions in the
case of ideal plasma) for the fluid
variables, and the electric field at the
boundary has no component parallel
to the boundary. Assuming the Ideal
MHD Ohm’s law, this implies that at
the conducting boundary the magnetic
field must be parallel to the boundary.

So at the conducting wall boundaries

∂yρs = 0,
∂yux,s = 0,
uy,s = 0,
∂yuz,s = 0,

∂yBx,s = 0,
By = 0,
∂yBz = 0,
Ex = 0,
∂yEy = 0,
Ez = 0.
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2-D GEM problem initial conditions

Initial conditions. The initial conditions are

a perturbed Harris sheet equilibrium. The

unperturbed equilibrium is given by

B(y) = B0 tanh(y/λ)ex,

E = 0,

ni(y) = ne(y)

= n0(1/5 + sech
2
(y/λ)),

p(y) =
B2

0

2n0

n(y),

pe(y) = p(y)/6,

pi(y) = 5p(y)/6.

Following [Hakim06], we assumed that the

initial current is carried only by the electrons:

Je = −
B0

λ
sech

2
(y/λ).

On top of this the magnetic field is perturbed

by

δB = ez ×∇(ψ), where

ψ(x, y) = ψ0 cos(2πx/Lx) cos(πy/Ly);

here [−Lx/2, Lx/2]×[−Ly/2, Ly/2] is the

computational domain. We chose the same

parameter values as in [Hakim06],

Lx = 4π, n0 = 1,

Ly = 2π, B0 = 0.1,

λ = 0.5, ψ0 = B0/10.

In [Birn01] (the original GEM problem) B0 =

1; to compare results we use B = .1BGEM,

t = 10tGEM, u = .1uGEM, E = .01EGEM,

p = .01pGEM, E = .01EGEM, etc.

Numerical parameters. We used a 512 ×
256 mesh.
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GEM reconnection challenge 2-fluid solution using DG
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GEM reconnection challenge 2-fluid solution using DG: |Jz,e|
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GEM reconnection challenge 2-fluid solution using DG: |Jz,e|
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GEM reconnection challenge 2-fluid solution using DG: |Jz,e|
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GEM reconnection challenge 2-fluid solution using DG: |Jz,e|
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GEM reconnection challenge 2-fluid solution using DG: ρi
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GEM reconnection challenge 2-fluid solution using DG: ρi
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GEM reconnection challenge 2-fluid solution using DG: ρi
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GEM reconnection challenge 2-fluid solution using DG: ρi
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GEM reconnection challenge 2-fluid solution using DG: ρe
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GEM reconnection challenge 2-fluid solution using DG: ρe
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GEM reconnection challenge 2-fluid solution using DG: ρe
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GEM reconnection challenge 2-fluid solution using DG: ρe
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GEM 2-fluid DG solution: reconnected flux
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Preliminary 1D studies

The need to design a stitched model has prompted us to carry out some
preliminary studies. We need to show that waves are transmitted smoothly
across the stitching layer between model boundaries, and for this we need to
study convergence of microscale model to macroscale model to determine where
to use the macroscale versus microscale model.

We have done 1D convergence studies for the MHD, 2-fluid, and PIC models for
the Brio-Wu shock problem, polarized Alfvèn waves, and Magnetosonic waves.

We find that (1) For a large light speed, as gyroradius goes to zero, the
2-fluid simulation seem to weakly converge to a limit that is close to the
1-fluid simulation, and (2) PIC simulations show rough agreement with 2-fluid
simulations as we increase the number of particles.
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Computations: Brio-Wu shock problem

For MHD the Brio-Wu initial
conditions to the left and right of zero
are:

26666666666664

ρ

v1

v2

v3

p

B1

B2

B3

37777777777775
left

=

266666666664

1.0
0
0
0

1.0
0.75
1.0
0

377777777775
and

26666666666664

ρ

v1

v2

v3

p

B1

B2

B3

37777777777775
right

=

266666666664

0.125
0
0
0

0.1
0.75
−1.0

0

377777777775

Roughly equivalent two-fluid initial
conditions are:

266666666666666666666666666666664

ρi
v1i
v2i
v3i
pi
ρe

v1e
v2e
v3e
pe

B1

B2

B3

E1

E2

E3

377777777777777777777777777777775
left

=

26666666666666666666666666664

1.0
0
0
0

0.5

1.0memi
0
0
0

0.5
0.75
1.0
0
0
0
0

37777777777777777777777777775

and

266666666666666666666666666666664

ρi
v1i
v2i
v3i
pi
ρe

v1e
v2e
v3e
pe

B1

B2

B3

E1

E2

E3

377777777777777777777777777777775
right

=

26666666666666666666666666664

0.125
0
0
0

0.05

0.125memi
0
0
0

0.05
0.75
−1.0

0
0
0
0

37777777777777777777777777775
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Computations

We plotted ion density at nondimensionalized time t = 0.1 for a range of values of the

nondimensionalized Larmor radius:

• rL =∞ (an Euler gas dynamics computation),

• rL = 10, 1, 0.1, 0.01, 0.003 (two-fluid computations), and

• rL = 0 (an ideal MHD computation).

Results:

• As rL → 0, the solution seems to weakly approach the MHD solution.

• For smaller values of rL computation becomes prohibitively expensive as we need a finer

computational grid to prevent negative pressures or densities from crashing the code and to

get convergence.

• For intermediate values of rL, the computational domain needs to be extended the most

due to substantial fast-moving oscillations.
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Computations (cell-centered), rL = 10

When the Larmor radius is large (rL = 10), the electromagnetic effects are weak and the ions

behave like an ideal gas. (At rL = 100, 2-fluid is indistinguishable from Euler.)
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Computations (cell-centered), rL = 1

As we decrease the Larmor radius, the solution begins to transition away from gas dynamics

(and eventually toward MHD).

41



Computations (cell-centered), rL = 0.1

When t ≈ rL, the solution is roughly intermediate between Euler and MHD.
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Computations (cell-centered), rL = 0.01

As the Larmor radius becomes even smaller, the frequency of the oscillations increases and the

solution begins to weakly approach the MHD solution.
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Computations (cell-centered), rL = 0.003

Convergence to MHD is suggested but far from confirmed. Unfortunately, computational

expense increases with decreasing Larmor radius.
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