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Abstract: SWIFF proposes a multiscale model to accelerate convergence of
macroscale quantities implied by microscale solutions. Time spent computing
in transitional regimes at model boundaries should not dominate multiscale sim-
ulation. This calls for efficient asymptotic-preserving (AP) microscale schemes.
This talk aims to frame and prompt discussion of two essential cases:

1 Making kinetic-Maxwell AP with respect to two-fluid-Maxwell (via
relaxation to a Maxwellian distribution of particle velocities), and

2 Making two-fluid-Maxwell AP with respect to MHD (by making oscillatory
time scales and light speed fast.
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“Truth”: kinetic-Maxwell

Maxwell’s equations:

∂tB +∇× E = 0, ∇ ·B = 0,

−c−2∂tE +∇× B = µ0J,

c−2∇ ·E = µ0σ.

Moments:

σ :=
∑

s
qs
ms
ρs, ρs :=

∫
fs dv,

J :=
∑

s
qs
ms
ρsus, ρsus :=

∫
vfs dv.

Kinetic equations:

∂t fs+v·∇xfs+as·∇vfs= Cs

Lorentz acceleration:

as =
qs
ms

(E + v × B) .

Remarks:
Cs: “collision operator”: incorporates
all microscale interactions.
For two fluids, WLOG
qi = e and qe = −e.
In my nondimensionalization, proton
charge e becomes gyrofrequency
and µ0 becomes plasma beta.
To change SI to Gaussian units:

Choose ε−1
0 = 4π.

Replace B with B/c.
So µ0 := 1

ε0c2 = 4π
c2 .

For easy reversion to SI, consistently
treat π as another name for (4ε0)

−1.

To change Gaussian units to SI:
Replace E with

√
4πε0E.

Replace B with c
√

4πε0B.
Replace q with q√

4πε0
.
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Modeling parameters

Physical constants that define an
ion-electron plasma:

1 e (charge of proton),
2 mi , me (ion and electron mass),
3 c (speed of light),
4 ε0 (vacuum permittivity).

Fundamental parameters that
characterize the state of a plasma:

1 n0 (typical particle density),
2 T0 (typical temperature),
3 B0 (typical magnetic field).

Derived quantities:

p0 := n0T0 (thermal pressure)

pB :=
B2

0
2µ0

(magnetic pressure)

ρs := n0ms (typical density).

Collision periods:

τsp: expected time for 90-degree
deflection of species s via p.

Collisionless time, velocity, and space scale parameters:

plasma frequencies: ω2
p,s :=

n0e2

ε0ms
=

µ0n0(ce)2

ms
,

gyrofrequencies: ωg,s :=
eB0

ms
,

thermal velocities: v2
t,s :=

2p0

ρs
,

Alfvén speeds: v2
B,s :=

2pB

ρs
=

B2
0

µ0msn0
,

Debye length: λD :=
vt,s

ωp,s
=

√
ε0T0

n0e2
,

gyroradii: rg,s :=
vt,s

ωg,s
=

msvt,s

eB0
,

skin depths: δs :=
vB,s

ωg,s
=

c
ωp,s

=

√
ms

µ0nse2
.

plasma β := p0
pB

=
( vt,s

vB,s

)2
=

( rg,s
δs

)2
.

non-MHD ratio: λ̂ :=
vB,s

c = λD
rg,s

=
ωg,s
ωp,s

=: 1
ω̂ .
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Nondimensionalization

Choose values for:
m0 (mass scale) (e.g. ion mass mi ),
q0 (charge scale) (e.g. proton charge e),
B0 (magnetic field) (e.g. ωg,i mi/e),
n0 (number density) (e.g. something � 1/x3

0 ),
T0 (temperature), (e.g. ion temperature Ti ),
τ0 (relax. period) (equilibration time scale),
x0 (space scale) (anything, e.g. δi ).

This implies typical values for:
v0 =

√
T0/m0 (velocity scale),

t0 = x0/v0 (time scale),
E0 = B0v0 (electric field),
f0 := ρ0 := m0n0 (mass density),
C0 = ρ0τ0/t0 (collision scale).

Scale parameters are thus:

ω2
p,0 :=

n0q2
0

ε0m0
,

ωg :=
q0B0

m0
,

τ :=
τ0

t0

vt := v0,

v2
B :=

2pB

ρ0
,

λD :=
vt

ωp,0
,

rg :=
vt

ωg
,

δ0 :=
vB

ωg
.

Making the substitutions

t = t̂ t0, Cs =ĈC0,

x = x̂x0, c =ĉv0,

q = q̂q0, v =v̂v0,

m = m̂m0, ∇ =x−1
0 ∇̂

n = n̂n0, =x−1
0 ∇x̂,

B = B̂B0, ∇v =v−1
0 ∇v̂

E = ÊB0v0,

in the fundamental equations gives a
nondimensional system, where the
charge scale e is replaced with
gyrofrequency ω̂g =

eB0
m0

and µ0 is

replaced with plasma beta µ̂ =
(

v0
vB

)2
.

Remark: in nondimensional units,
ωg =

q0B0
m0

simplifies to ωg = e.
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Nondimensionalization in detail

The essence of plasma nondimensionalization
is seen in the electro-momentum system,
comprised of the two-fluid equations for
momentum and electric field evolution.

Setting ∇ = 0 yields

dt us = qs
ms

(E + us × B)
�
�
�>

=: ω̂g

q0B0t0
m0

,

−∂t E =
(∑

sqsnsus
)
�

��>
=:

ω̂g
ε̂

t0q0n0

ε0B0
,

where we have chosen typical values to
nondimensionalize and E0 := B0u0 and
ρs = msns. Note that

1
ε̂

=

(
n0q2

0

ε0m0

)
︸ ︷︷ ︸

ω2
p

(
m0

q0B0

)
︸ ︷︷ ︸

ω
−1
g

t0
ω̂g

=
(ωp

ωg

)2
= ω̂

2 =
( c

vB

)2
=

1

λ̂2
.

Retaining spatial components incorporates wave
speeds and completes the picture:

−ĉ−2
∂t E + ∇ × B = µ̂

(
ω̂g
∑

sqsnsus
)
,

dt us +
1

M2
a

∇ps

ρs
= ω̂g

qs
ms

(E + us × B),

where the velocity scale v0 := x0/t0 defines the
nondimensionalized speed of light ĉ := c/v0, the
acoustic quasi-Mach number Ma defined by

M2
a :=

v2
0ρ0

p0

can be incorporated into pressure closure, and the
magnetic quasi-Mach number MB defined by

µ̂ :=
1

ĉ2 ε̂
=
( v0

vB

)2
=: M2

B

can be incorporated into the electromagnetic field.

Plasma beta satisfies µ̂ = M2
B = βM2

a. I choose v0 to
be the quasi-acoustic speed

√
p0/ρ0, making Ma = 1

and µ̂ = β.
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Model hierarchy

Kinetic-Maxwelly(τ̂ss→0)

two-fluid Maxwelly(ĉ→∞)

two-fluid MHD‡y(ω̂g=r̂g
−1→∞)

Ideal MHD‡

Remarks:
Each model simplification makes
some process instantaneous:

damping to Maxwellian
wave speed
oscillations

‡ these limits are weak (i.e., true after averaging out high-frequency oscillations)
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Nondimensionalized kinetic-Maxwell

Maxwell’s equations:

∂t B +∇× E = 0, ∇ ·B = 0,

−ĉ−2∂t E +∇× B = µ̂J,

ĉ−2∇ ·E = µ̂σ.

Moments:

σ := ω̂g
∑

s
qs
ms

ρs, ρs :=
∫

fs dv,

J := ω̂g
∑

s
qs
ms

ρsus, ρsus :=
∫

vfs dv.

Kinetic equations:

∂t fs + v·∇xfs + as·∇vfs = τ̂−1Cs

Lorentz acceleration:

as = ω̂g
qs
ms

(E + v × B) .

Nondimensional parameters:
1 light speed: ĉ := c

v0
,

2 gyrofrequency (or gyroradius):
ω̂g := t0ωg,0 = x0

rg
=: 1

r̂g

3 Plasma Beta: µ̂ = β =
(

v0
vB

)2
.

Or: ε̂ := 1
µ̂ĉ2 = λ̂2, where λ̂ =

λ̂D
r̂g

=
ω̂p
ω̂g

= c
vB

.

4 Relaxation period:
τ̂ :=

τ0
t0

.

Remarks:
Take µ̂ as constant. (Can eliminate µ̂ by absorbing√

µ̂ into qs and
√

µ̂−1 into E and B.)

MHD is the limit where ĉ → ∞, ω̂g → ∞, and
τ̂ → 0.

So a kinetic solver can become an MHD solver
by artificially dialing these time scales to
instantaneous if the solver can efficiently skip
over fast time scales.

Now let τ̂ → 0 to get the two-fluid model.
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Nondimensionalized two-fluid Euler Maxwell

Maxwell’s equations:

∂t B +∇× E = 0, ∇ ·B = 0,

−ĉ−2∂t E +∇× B = µ̂J,

ĉ−2∇ ·E = µ̂σ.

Moments:

σ := ω̂g
∑

s
qs
ms

ρs, ρs :=
∫

fs dv,

J := ω̂g
∑

s
qs
ms

ρsus, ρsus :=
∫

vfs dv.

Euler equations:

∂tρs +∇ · (ρsus) = 0,

ρsdt us +∇ps = ω̂g
qs
ms

ρs (E + us × B) ,

dus
t ln

(
psρ

−γ
s

)
= 0.

Remarks:

Euler-Maxwell makes the unphysical
assumption that:

τ̂ is faster than all other time
scales. . .
. . . and that τie is much slower.

Non-zero τ̂ motivates diffusive closures
or higher-moment fluid models.

Non-infinite τie motivates resistivity.

ω̂g may be taken as a proxy for
space/time scale or for electron charge.

Now take ĉ → ∞ to get two-fluid MHD (i.e., charge neutrality and vanishing ∂t E).
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Nondimensionalized 2-fluid MHD (ĉ → ∞)

Electromagnetism

∂t B +∇× (B × u + E′) = 0, ∇ ·B = 0,

J = µ̂−1∇× B

Ohm’s law

E′ = mi−me
(eω̂g )ρ

J × B

+ 1
(eω̂g )ρ

∇ (mepi − mipe)

+ mime
(eω̂g )2ρ

[
∂t J+∇·(uJ+Ju− mi−me

(eω̂g )ρ
JJ)

]
mass and momentum:

∂tρ+∇ · (uρ) = 0,

ρdt u +∇(pi + pe) +∇ ·Pd = J × B.

Pressure for each species:

dus
t ln

(
psρ

−γ
s

)
= 0.

Implied total pressure evolution:

dt ln
(
pρ−γ

)
+ p−1∇ ·qd = 0.

Other Definitions:

dt := ∂t + u ·∇,

dus
t := ∂t + us ·∇,

Pd :=
∑

sρswsws ≈ mrednww

w := ui − ue ≈ J
(eω̂g )n

(by quasineutrality),

m−1
red := me

−1 + mi
−1.

qd :=
∑

s (ws(Es + ps))

Now take ω̂g → ∞ to get Ideal MHD (i.e., ideal Ohm’s law and vanishing qd and Pd).
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Equations of Ideal MHD (ω̂g → ∞)

Electromagnetism

∂t B +∇× (B × u) = 0,

∇ ·B = 0,

J = µ̂−1∇× B

mass and momentum:

∂tρ+∇ · (uρ) = 0

ρdt u +∇p = J × B

Pressure

dt ln
(
pρ−γ

)
= 0.

Energy:

∂tE+∇ · (u(E+p)) = J ·E

Remarks:
Ideal MHD is a weak limit

Ideal MHD is hyperbolic and can develop
shocks, in which case full energy evolution
and conservation form should be used.
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Coarse representation

Philosophy: only resolve what is needed
Coarse representations are justified

when microscale processes are “along for the ride” and
when the effect of micro on macro can be inferred from macro quanitites.

Kinds of coarsening:
discretization (mesh, time step, order of accuracy), and
physics (model):

representation (of particle density) and
closure (model used to evolve the representation).

Model coarsening is justified by fast processes:
(small reduction): fast plasma frequency (neutrality),
(some reduction): fast gyrofrequency (gyrokinetic reduction), and
(great reduction): fast collisions (kinetic → fluid).
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Multiscale convergence

What does it mean for a multiscale algorithm to converge?
The quantities that we care about are defined in terms of the coarsest
representation (e.g. MHD fluid moments).
Goal: accurately predict the projection of the fine solution onto the coarse
model.
Multiscale algorithm: uses the coarse model to accelerate convergence of
the coarse projection of the fine solution.
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dealing with fast processes

An explicit algorithm must resolve the fastest process in the system. This sug-
gests two approaches:

1 Explicit algorithm approach:
Artificially slow down fast processes.
Justification: if you don’t need to
resolve it then why not slow it down?
Issue: trying to stitch to a model that
makes the process instantaneous:

conservation is sacrificed to
maintain regularity or positivity.
thick sponge region needed to
absorb impedance mismatch.
feasible only for coarse
resolution.

Artificially slowing down processes is
appropriate where sticking to a single
model.

2 Asymptotic-preserving (AP)
implicit algorithm approach:

Use an implicit method to step over
fast processes.
speed up fast processes so that the
micro solver becomes a macro solver.

Advantages:
can greatly reduce or even
eliminate the sponge region.
can maintain conserved
quantities.

Issues:
more complicated to implement
convergence becomes slow in
transitional regimes
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Implicit schemes: full versus semi-implicit

How do you deal with slow convergence in transitional regimes?

Semi-implicit approach.
separate out and linearize fast processes via operator splitting

philosophy: fast processes are slaved precisely because they are approximately linear.
advantages:

non-iterative
simple to implement

issues:
time-splitting error:

ostensibly not a problem (not trying to resolve the split-off processes anyway) –
but near-equilibrium states need a well-balanced scheme.

divergence constraints are not exactly maintained.

Fully implicit approach.
Allows conforming discretization.

Use semi-implicit or macroscale solution as predictor.

Use algebraic multigrid to accelerate convergence of the microscale model. See [BraLi11].

Want a bound on number of iterations needed for convergence that is independent of the
choice of fast time scale.
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Summary: Asymptotic-preserving schemes

For efficient micro-macro coupling, the microscale discretization needs to
be asymptotic-preserving (AP) with respect to the macroscale model:

micro-scheme(ε,h) h→0−−−−→ micro-physics(ε)yε→0

yε→0

macro-scheme(h) h→0−−−−→ macro-physics

The micro-scheme is efficiently AP with respect to the macro-physics if it
converges to a limiting macro-scheme that is a consistent, stable, efficient
solver for the macro-physics model.
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Kinetic → two-fluid

Making kinetic models AP with
respect to two-fluid models is
“easy”:

Relax to the assumed distribution at a
tunable rate.
Relax to Maxwellian (or Kappa
distribution) to get two-fluid Euler.

Challenge: kinetic solver should
become an efficient fluid solver in
the fluid limit.

cost of limit solver needs to be on
same order as cost of fluid solver for
efficient convergence.
so kinetic representation must be able
to efficiently represent assumed
velocity spread of fluid model.
natural way: δf method. (See
[CreCroLem12] for a successful
Vlasov-Poisson implementation.)
alternative: periodically resample
using particles with e.g. Gaussian

shape in phase space. (See
[Hewett02].) Periodic resampling
based on linear deformation of
particle shape turns a second-order
PIC code into a second-order Vlasov
solver without modification of the PIC
algorithm used to evolve particles and
fields. (See [Pinto12],
[PintoSonFriGroLun12].)

Side-benefits:
less noise
fewer particles needed

Challenges:
δf : definition of projection operators
to exchange information between fluid
and kinetic components
resampling: need efficient resampling
of particles. Can use wavelet
decomposition. Use particle splitting
to delay global resampling.
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Two-fluid splitting strategy

Two-fluid Euler Maxwell looks like

∂tq +∇ · f = s.

Operator splitting alternately solves
the hyperbolic part,

(H) ∂tq +∇ · f = 0

and the source term part,

(S) ∂tq = s.

Source term:
linear ODE with constant
coefficients
imaginary eigenvalues
can step over plasma period and
gyroperiods without iteration.

Hyperbolic part:

homogeneous Maxwell is linear,

so can step over light speed
without iteration.

Advantage: a noniterative method can
step over all time scales needed for
MHD limit.

Issues:

Divergence constraints are
ignored. (Evolve correction
potentials.)

Time splitting must be
well-balanced.

Trapezoid rule looks promising.
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Simulation results (Harish Kumar)

1 Brio-Wu simulations using an explicit method. (Slides 27–34 posted at

http://www.danlj.org/eaj/math/research/presentations/hyp2008/talk.pdf.)

2 Harish Kumar’s simulations using time splitting. (Slides presented to MATH-CCS at

RWTH Aachen on 30th October, 2012.)

3 Kumar and Mishra IMEX simulations. (Figure 5 on page 21 of [KumarMishra11].)
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Summary of proposed IMEX scheme

Non-iterative two-fluid AP→ MHD:
split off source term and solve
exactly or via trapezoid rule.
solve homogeneous Maxwell via
non-iterative implicit solver.

Non-iterative Kinetic AP→ two-fluid:
Embed fluid model and relax δf to
zero to make kinetic AP with
respect to fluid
Split off collision operator
δf PIC plus operator splitting

Further possibilities for kinetic IMEX
solver:

Use a higher-moment model for
embedded fluid model.

Use periodic resampling to turn
PIC code into second-order
Vlasov solver.

Apply operator splitting to PIC to
get kinetic AP→ MHD directly.
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